• Title/Summary/Keyword: Electrical Load Equipments

Search Result 86, Processing Time 0.024 seconds

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF

Design of High Power Density AC/DC Adapter (고전력밀도 AC/DC 어댑터의 설계)

  • Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.259-265
    • /
    • 2010
  • The proposed method offers an improved control method for high power density AC/DC adapter by using more energy efficient electrical equipments. Power factor corrector (PFC) topology is based on boost topology with boundary conduction mode (BCM) and DC/DC topology is based on LLC resonant converter, which helps to reduce size of the semiconductor and the magnetic devices. Test results with 85W AC/DC adapter (18.5V/4.6A) design shows that the measured efficiency is 90% at $90V_{rms}$ input voltage with power density of $36W/in^3$. It also shows low no load power consumption of about 0.5W.

A Study on the Decision Strategy of Investment Priority Focused on Economics in Distribution Network (경제성에 기반한 배전계통 설비투자 우선순위 결정에 관한 연구)

  • Park, Chang-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.31-39
    • /
    • 2009
  • This paper shows prioritization process for equipment investment plans considering reliability indices and economical efficiency. To decide prioritization of distribution investment projects, we made a distribution system model using system configuration, it's component and load information and designed several investment alternatives to improve reliability of present system. Lastly, we proposed a evaluation model of economical efficiency assessment on distribution investment alternative projects. To analyze influence by reliability and economical efficiency, we produced economical effects with applying time-varying failure rate of KEPCO's main equipments of distribution system and interruption cost of electric power affected by investment. Finally, in order to insure the validity of this proposed methodology, we compared investment prioritization by economical evaluation with that of real investment alternatives of KEPCO's branch office. In conclusion, this paper shows what and how to interpret the reliability effects of distribution system investments into financial indicators beneficial for power utilities's managers to make decision on the perspective of corporate value.

An Analysis and Optimum Design of o Neutral Line Harmonics Eliminating Reactor (중성선 영상고조파 저감용 특수 Reactor 최적설계 연구)

  • Shin, Pan-Seok;Chung, Gyo-Bum;Kim, Han-Deul;Kim, Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.33-41
    • /
    • 2006
  • In the modem power distribution systems, there are lots of zero-phase current harmonics in the neutral power line due to much usages of the controlled switching devices, various semiconductor power converting systems, OA(Office Automation) equipments, PC etc. In order to minimize the current harmonics a zero-phase neutral line current eliminating reactor (NHER) is designed and analyzed its performance using the finite element program. For the design of NHER a program is developed using C++ program. To verify the program a case model(380/220[V], 200[A]) is designed and analyzed by the developed program. As the results of the optimal design, the core loss is reduced by 26[%] with eliminating of the current harmonics. Especially the ninth harmonics is much reduced as compared with the others. When the design of NHER is adapted to the load of the power system, the eliminating effect and efficiency of the device will be much better

A study on the Development of Low-loss Type Mold Autotransformers (저손실형 몰드 단권변압기 개발)

  • Lee, Jong-Su;Shin, Myung-Ho;Mun, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF

A Study on the Protection System on the Electric Railways (전철급전회로 보호시스템에 관한 연구)

  • Chang, Sang-Hoon;Lee, Chang-Moo;Han, Moon-Seob;Oh, Kwang-Hae;Shin, Han-Soon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1166-1169
    • /
    • 1998
  • The Load characteristic of electric railway requires the power demand of the high capacity which amplitude is spacial-temporally fluctuated due to frequent starting and stopping with large tractive force. The conventional electric railway mainly consists of the resistance controlled and the thyristor controlled locomotives, are compensated for their bad characteristics of the power factor$(70\sim80%)$ with installation of another capacitor improving power factor at the substation. Since 1994, VVVF train car with good characteristics of power factor(100%) have been introduced and operated in Kwa-Chon Line. From the present technical tendency, it is judged that introduction of the locomotive with various controlled methods is necessary. The protective equipments installed at the substation are complicated and various aspects to detect faults and reduce their extension, so the universal countermeasures are required. Specially in the case of the fault occurrence it is difficult to calculate the fault location because of the change in the contactline constant according to modifying the characteristics of the contactline (the dualized catenary wire and extension, etc), so much time is required for the detection of fault location. In BT-fed method distance-relays and fault-locators are not installed, we have so many difficulties in the quick accident recovery.

  • PDF