• 제목/요약/키워드: Electrical Field Optimization

검색결과 228건 처리시간 0.025초

평면구조 P-MOS DRAM 셀의 커패시터 VT 이온주입의 최적화 (Optimization of Capacitor Threshold VT Implantation for Planar P-MOS DRAM Cell)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.126-129
    • /
    • 2006
  • We investigated an optimized condition of the capacitor threshold voltage implantation(capacitor $V_T$ Implant) in planar P-MOS DRAM Cell. Several samples with different condition of the capacitor $V_T$ Implant were prepared. It appeared that for the capacitor $V_T$ Implant of $BF_2\;2.0{\times}l0^{13}\;cm^{-2}$ 15 KeV, refresh time is three times larger than that of the sample, in which capacitor $V_T$ Implant is in $BF_2\;1.0{\times}l0^{13}\;cm^{-2}$ 15 KeV. Raphael simulation revealed that the lowed maximum electric field and lowed minimum depletion capacitance ($C_{MIN}$) under the capacitor resulted in well refresh characteristics.

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh;Yadipour, Reza;Baghban, Hamed
    • Current Optics and Photonics
    • /
    • 제2권1호
    • /
    • pp.85-89
    • /
    • 2018
  • This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구 (A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling)

  • 이정훈;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.

상용 LTCC 소재의 슬러리 제조 공정에서 분산성 평가 및 최적화 (Evaluation and Optimization of Dispersion in Slurry Preparation of Commercial LTCC Material)

  • 권혁중;신효순;여동훈;김종희;조용수
    • 한국전기전자재료학회논문지
    • /
    • 제21권4호
    • /
    • pp.341-347
    • /
    • 2008
  • Laminated LTCC components of high integrity, fabricated by thick film process, are applied to industrial field of IT technology along with miniaturization trend of electronic devices. Dispersion states were examined by several evaluation methods with MLS-22, which is one of commercial LTCC powders, to achieve optimal dispersion as basis for stable LTCC fabrication process. Slurry viscosity, surface roughness of dip-coated slide glass, sedimentaion of slurry, and SEM observation of dried surface were utilized with respective amount change of various commercial dispersants. Among these commercial dispersants, optimal dispersion state was obtained with 0.4 wt% of BYK-111, from the results of various evaluation methods.

침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과 (The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells)

  • 윤현진;손채화;김규천;이해준
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

Vector Control of Induction Motors using Optimal Efficiency Control

  • Kim, Sang-uk;Chi, Jin-ho;Kim, Young-seok
    • Journal of Power Electronics
    • /
    • 제2권1호
    • /
    • pp.67-75
    • /
    • 2002
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of the iron losses. The model, which only requires the parameters of the induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The proposed optimal efficiency control algorithm calculates the reference torque and flux currents for the vector control of the induction motors. A 32 bit floating point TMS320C32 DSP chip implements the drive system with the efficiency optimization controller. The results show the effectiveness of the control strategy Proposed for the induction motor drive.

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

FEM을 이용한 Micro-Electromagnetic Clutch 토크해석 (Study on Torque Analysis of Micro-Electromagnetic Clutch by Using FEM)

  • 박창호;조종두;김명구;반강
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.60-65
    • /
    • 2005
  • This study tries to analyzes the static friction torque that generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the static friction torque prediction is very important. We construct the axi symmetric FEM model for analyze the static friction torque and the real material properties are substituted to the FEM model. For a test, predicted static friction torque is compared with experimental one to discuss the rationality of torque analysis process. The analytical result agrees well to experimental data. explaining the validity of the mathematical process and FEM model.

열 유입률을 고려한 자계-열계 다목적 위상최적설계 (Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate)

  • 심호경;왕세명;문희곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF