• Title/Summary/Keyword: Electrical Drives

Search Result 732, Processing Time 0.027 seconds

Diminution of Current Measurement Error for Vector Controlled AC Motor Drives (교류전동기 벡터제어를 위한 전류 측정오차의 저감에 관한 연구)

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.32-36
    • /
    • 2004
  • In order to achieve high performance vector control, it is essential to measure accurate ac current. The errors generated from current path are inevitable, and they could be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times of stator electrical frequency respectively. Since these undesirable ripples bring about bad influences to motor driving system, a compensation algorithm must be needed in the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate the current measurement errors. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness of the variation of the mechanical parameters, the application of the steady and transient state, the easy implementation, and less computation time.

  • PDF

SENSORLESS CONTROL FOR INDUCTION MOTOR USED IN TRACTION APPLICATION (견인용 유도전동기의 센서리스 제어)

  • Ryoo, Hong-Je;Kim, Jong-Soo;Rim, Geun-Hie;Kisck, Dragos Ovidiu;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1136-1139
    • /
    • 2000
  • The paper describes a new and rigorous mathematical model for the rotor field oriented system with induction motor which uses the estimated speed and rotor flux based on a Model Reference Adaptive System, as well as the real-time approach. The estimated speed and rotor flux is used for the speed and flux feedback control. The stability and the convergence of the estimator are improved on the basis of hyperstability theory for non-linear systems. The real-time controller and estimator are implemented with a sampling period of $926{\mu}s$ using a dual TMS320C44 floating-point digital signal processor. The validity of the proposed method is verified by simulation, and also, the sensorless control was tested on the propulsion system simulator, used for the development of Korean High-Speed Railway Train (KHSRT) [5].

  • PDF

A Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치센서 없는 리럭턴스 동기전동기의 위치제어 시스템)

  • Kim, Min-Huei;Lee, Bok-Yong;Kim, Kyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.135-141
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC), The problems of DTC for high-dynamic performance and maximum efficiency RSM drive due to a saturated stator linkage flux and nonlinear inductance curve with various load currents, The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by adapting from measurable the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at ${\pm}$20 and ${\pm}$1500 rpm. The developed digitally high-performance control system are shown some good response characteristic of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

Development of Self-Tuning and Adaptive Fuzzy Controller to Control Induction Motor Drive (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.32-34
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good Performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed model reference adaptive fuzzy control(MFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaption mechanism(FAM), MFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, MFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

Distance Education in Soft-Switching Inverters

  • Lascu, Dan;Bauer, Pavol;Babaita, Mircea;Lascu, Mihaela;Popescu, Viorel;Popovici, Adrian;Negoitescu, Dan
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.628-634
    • /
    • 2010
  • The paper describes aspects regarding an E-learning approach of resonant ac inverters. The learning process is based on "Learning by Doing" paradigm supported by several learning tools: electronic course materials, interactive simulation, laboratory plants and real experiments accessed by Web Publishing Tools under LabVIEW. Built on LabVIEW and accompanied by a robust, flexible and versatile hardware, the experiment allows a comprehensive study by remote controlling and performing real measurements on the inverters. The study is offered in a gradual manner, according to the Leonardo da Vinci project EDIPE ($\b{E}$-learning $\b{D}$istance $\b{I}$nteractive $\b{P}$ractical $\b{E}$ducation) philosophy: theoretical aspects followed by simulations, while in the end the real experiments are investigated. Studying and experimenting access is opened for 24 hours a day, 7 days a week under the Moodle booking system.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

Effects of Zero-Sequence Transformations and Min-Max Injection on Fault-Tolerant Symmetrical Six-Phase Drives with Single Isolated Neutral

  • Munim, Wan Noraishah Wan Abdul;Tousizadeh, Mahdi;Che, Hang Seng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.968-979
    • /
    • 2019
  • Recently, there has been increased interest in the study of multiphase machines due to their higher fault-tolerant capability when compared to their conventional three-phase counterparts. For six-phase machines, stator windings configured with a single isolated neutral (1N) provide significantly more post-fault torque/power than two isolated neutrals (2N). Hence, this configuration is preferred in applications where post-fault performance is critical. It is well known that min-max injection has been commonly used for three-phase and multiphase machines in healthy condition to maximize the modulation limit. However, there is a lack of discussion on min-max injection for post-fault condition. Furthermore, the effects in terms of the common-mode voltage (CMV) in modulating signals has not been discussed. This paper investigates the effect of min-max injection in post fault-tolerant control on the voltage and speed limit of a symmetrical six-phase induction machine with single isolated neutral. It is shown that the min-max injection can minimize the amplitude of reference voltage, which maximizes the modulation index and post-fault speed of the machine. This in turn results in a higher post-fault power.

The Effect of Product Knowledge and Service Quality on Customer Satisfaction

  • AL IDRUS, Salim;ABDUSSAKIR, Abdussakir;DJAKFAR, Muhammad;AL IDRUS, Shofiyah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.927-938
    • /
    • 2021
  • Small and Medium Enterprises (SMEs) is one of several activators that drives the economy of Indonesia because SMEs provide jobs, increase Gross Domestic Product (GDP), and assure the delivery of products and services. However, Indonesian SMEs are not very competitive in the industrial world, and one of the causes is the low quality of products that undermine customer satisfaction. There are several factors presumed as influencing customer satisfaction, which among others include product knowledge, service quality, and competitive advantage. The objective of this research is to reveal the contribution of product knowledge and service quality to customer satisfaction with competitive advantage as the mediation variable. This research used a quantitative approach. The causal relationship across variables was examined with Structural Equation Modeling-Partial Least Squares (SEM-PLS). The sample of this research involved 140 respondents. Data was collected through a questionnaire and the items in the questionnaire were processed with a software called SmartPLS version 3.3.2. Results of this research indicate (1) product knowledge and service quality can increase competitive advantage and customer satisfaction in East Java SMEs; (2) competitive advantage can act as a mediator in the effect of service quality on customer satisfaction (3) product knowledge can increase customer satisfaction but the increase is not significant statistically.

A Study on DC Motor Speed Control for Building a Port Cargo Handling Equipment (항만하역장비용 직류전동기의 속도제어에 관한 연구)

  • Ahn, B.Y;Park, J.S.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.273-280
    • /
    • 1997
  • Recently the importance of the cargo handling equipments in a port has been increasing to get strong competition from other ports. Many ports are making efforts to modernize their cargo handling equipments. The kernel technology of such equipments is the speed control of DC motor which is used as an essential part of them. In this paper, we discuss the speed control of a DC motor as a basic work for building cargo handling equipments in a port. DC Motors are still widely used in industrial fields, as driving power motor for electrical fields. DC drives, being easy to control, are widely used in many variable-speed and position control drive system. Traditional analog control circuits used in such applications have many disadvantages. Complex control schemes are difficult to implement with analog components. All these factor and invention of the microprocessor has made it possible to use digital control circuits, using microprocessing system. These digital circuits have been found to be reliable, flexible, and also immune to noise. In this paper it presents the speed control of a SCR DC motor driver which using dual converter by 80c196kc microprocessor. We developed a thyristor power amplifier which does not cause damage thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was analyzed voltage and currents wave at reactive load.

  • PDF