• Title/Summary/Keyword: Electrical Discharge Machining

Search Result 195, Processing Time 0.02 seconds

A Basic Study on Electrical Discharge Machining (방전 가공의 기초적 연구)

  • 김해종;마대영;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.42-45
    • /
    • 1994
  • In this paper, we will report on the effect of the pointed end shape of an electrode, discharge energy, pulse width and discharge current on machining characteristics. The results obtained are as tollows: 1)As the discharge Energy increases, the diameter and the depth of the discharged crater becomes larger and deeper. 2) The discharge energy is not constant during discharge but varies depending on the pointed end shape of th8 electrode. 3) The shape of crater depends on the pulse width and discharge current.

  • PDF

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

Improvement of Electrical Discharge Drilling (방전드릴링의 가공특성 향상)

  • Song, Ki-Young;Chung, Do-Kwan;Park, Min-Soo;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.45-51
    • /
    • 2010
  • Electrical discharge drilling (ED-drilling) is a widespread machining method used to bore small holes with a high aspect ratio. This paper presents additional methods by which ED-drilling can improve machining speed, tool wear, and machined surface quality. Firstly, for high machining speed, and low tool wear, a new-type electrode that was ground on one side or both sides of the cylindrical electrodes was suggested to expel debris. The debris which is generated during the machining process can cause sludge deposition and secondary discharge problems: major reasons to decrease machining speed. This new-type electrode also reduced tool wear that was due to the decrease of unstable discharge in a machining gap by helping to expel waste water and debris from the gap. Secondly, to improve the machined surface roughness, an electrolyzation process was included after drilling. This process made the machined surface smooth by means of an electrochemical reaction between an electrode and a workpiece. In this study, the machining speed, electrode wear, and surface roughness were improved by the newtype electrode and the electrolytic process.

Adaptive Identification Method of EDM Parameters Using Neural Network (신경망을 이용한 방전 조건의 적응적 결정 방법)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 1998
  • Adaptive neural network approach is presented for determining Electrical Discharge Machining (EDM) parameters. Electrical Discharge Machining has been widely used with its capability of machining hard metals and tough shapes. In the past few years, EDM has been established in tool-room and large-scale production. However. in spite of it's wide application, an universal selection method of EDM parameters has not been established yet. No attempt has been tried before to suggest a logical method in determining essential machine parameters considering the machining rate and resulting surface roughness integrity. The paper presents a method, which is focusing on determining appropriate machining parameters. Depending on the electrode wear and surface roughness, an adaptive neural network is designed for providing suitable machining guideline.

  • PDF

Micro-shaft and Micro-hole Machining for Micro Punching (마이크로 펀칭용 미세축, 미세구멍의 가공)

  • Ryu S. H.;Cho P. J.;Lee K. H.;Chu C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.239-244
    • /
    • 2002
  • In this study, we developed the manufacturing technology of micro-hole and micro-shaft for micro punching system using micro electrical discharge machining and micro electro chemical machining. Micro punching dies of tungsten carbide with $55\;{\mu}m\;and\;110\;{\mu}m$ diameter and $250\;{\mu}m$ depth were made by micro electrical discharge machining. The form accuracy and surface roughness of die hole were pretty good and it was shown that the punched hole quality was fine. WC micro-shaft with $30\;{\mu}m$ diameter was made by the multistep micro electro chemical machining. The developed technologies can be effectively used in precision manufacturing of micro punching die and mass production of micro-shaft.

  • PDF

Optimization of Process Parameters for AISI 4340 Steel in Electrical Discharge Machining (AISI 4340강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. This present investigation details the determination of optimum process parameter to attain the better machining performance in EDM of AISI 4340 steel with graphite as a tool electrode. The experimental combinations are planned and analyzed by Taguchi's design of experiments approach. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The influence of process variables such as discharge current, pulse on and pulse off time, voltage and spark speed were investigated to control the various desired performance measures such as surface roughness. Analysis of Variance (ANOVA) has to be performed to know the magnitude of each factor. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Determination of EDM Parameters based on Electrode Wear (전극 소모비에 기초한 방전 조건 생성)

  • 주상윤;이건범;왕지남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1154-1158
    • /
    • 1995
  • Electrical Discharge Machining, with its ability to machine hard metals and tough shapes has become a very desirable process. In the past few years, Electrical Discharge Machining (EDM) has been solidly established in tool-room and large-scale production. However, in spite of its indispensability in many areas of metal removal applications, the theoretical basis of EDM process is yet to be established. More importantly, the information regarding essential technology parameters such as machining rate and resulting surface roughness integrity, has not been raised to the level of a general technical science. The paper presents a method, which can be determining approprate machining parameters for the given parameters such as electrode wear and surface roughness based on machining guideline utilizing neural networks.

  • PDF

FIT OF IMPLANT FRAMEWORKS FABRICATED BY ONE-PIECE CASTING, LASER WELDING, SOLDERING, AND ELECTRIC DISCHARGE MACHINING (일체주조법, 레이저용접법, 납착법, 방전가공법에 의해 제작된 임플란트 보철물의 적합도에 관한 연구)

  • Seol, Young-Hoon;Jeong, Chang-Mo;Jeon, Young-Chan;Kang, Sung-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.156-171
    • /
    • 2002
  • The purpose of this study was to measure and compare the strains produced by screw-tightening implant frameworks fabricated by aye different fabrication methods; (1) one-piece cast using plastic sleeve, (2) one-piece cast using gold cylinder, (3) laser welding, (4) soldering, and (5) electrical discharge machining, and also to measure and compare the strains produced when the order of screw tightening was changed A research model incorporating eighteen strain gages was made to measure the fit of implant frameworks in three dimensions. Three implants aligned in an arc were fixed on the top ends of the L-shape aluminum bars of the research model, and standard abutments were joined to the implants with abutment screws. Five types of implant framework were placed on the abutments and screwed by a torque wrench using 10 Ncm. Under the conditions of this study, the following conclusions were drawn: 1. The electrical discharge machining group showed the smallest magnitude of strain, followed by the soldering group, the laser welding group, the one-piece cast group using gold cylinder, and the one-piece cast group using plastic sleeve. However, among the magnitude of strain for the remaining groups except the electrical discharge machining group, there were not significant differences. 2. When the order of screw tightening was changed, there were not significant differences in the magnitude of strain. 3. In comparison with the electrical discharge machining group, the laser welding group and the one-piece cast groups showed greater horizontal distortion and the soldering group showed greater horizontal and vertical distortion.

Micro Electrical Discharge Milling Using Deionized Water (탈이온수를 이용한 미세 방전 밀링)

  • Chung Do-Kwan;Chu Chong-Nam;Kim Bo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.69-75
    • /
    • 2006
  • In this paper, micro electrical discharge milling using deionized water as dielectric fluid was investigated. In EDM, dielectric fluid is an important factor which affects machining characteristics. When deionized water was used as dielectric fluid, machining characteristics were investigated according to voltage, capacitance, and resistivity of deionized water. Machining gap increased with increasing voltage and capacitance. As the resistivity of deionized water decreased, the machining gap increased. The wear of a tool electrode and machining time can be reduced by using deionized water instead of EDM oil. Surface roughness was also improved when deionized water was used.

Mechanical Properties and Electrical Discharge Machinability of $\beta$-Silon-TiB2 Composites

  • Park, Yong-Kap;Kim, Jun-Tae;Baik, Yong-Hyuck
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 1999
  • The influences of TiB2 additions to the β-sialon on mechanical propeties and electrical discharge machinability were investigated. Samples were prepared by adding 15, 30 and 45 vol.% TiB2 particles as a second phase to a β-sialon matrix. The β-sialon-TiB2 composites were sintered by hot pressing in a nitrogen atmosphere at 1800℃ with pressure of 30 MPa. The fracture toughness of the composites was increased with TiB2 content except 45 vol.% TiB2 composite. The crack propagation and crack deflection were observed with a SEM for etched samples after vicker's indentation. The composites containing more than 30 vol.% TiB3 had resistivity lower than 10-3 Ω㎝. The electrical discharge machining (EDM) of composited was conducted with two kind of machines such as die-sinker and wire cutter. The machinability was evaluated with the cutting rate surface roughness after machining.

  • PDF