• Title/Summary/Keyword: Electrical DC survey

Search Result 17, Processing Time 0.029 seconds

Automated Analysis for PDC-R Technique by Multiple Filtering (다중필터링에 의한 PDC-R 기법의 자동화 해석)

  • Joh, Sung-Ho;Rahman, Norinah Abd;Hassanul, Raja
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.141-148
    • /
    • 2010
  • Electrical noises like self potential, burst noises and 60-Hz electrical noises are one of the causes to reduce reliability of electrical resistivity survey. Even the PDC-R (Pseudo DC resisitivity) technique, recently developed, is suffering from the problem of low reliability due to electrical noises. That is, both DC-based and AC-based resistivity technique is subject to reliability problem due to electrical noises embedded in urban geotechnical sites. In this research, a new technique to enhance reliability of the PDC-R technique by minimizing influence of electrical noises was proposed. In addition, an automated procedure was also proposed to facilitate data analysis and interpretation of PDC-R measurements. The proposed technique is composed of two steps: 1. to extract information only related with the input current by means of multiple-filter technique, and 2. to undertake a task to sort out signal information only to show stable and reliable characteristics. This automated procedure was verified by a synthetic harmonic wave including DC shift, burst random noises and 60-Hz electrical noises. Also the procedure was applied to site investigation at urban areas for proving its feasibility and accuracy.

Mitigation of Stray Current Interference from DC Electric Railroad(3) Stray Current Confinement Method (직류전기철도의 누설전류 간섭대책(3) 누설전류 포집시스템)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.276-278
    • /
    • 2005
  • For over 25 years, the stray currents from DC electric railroads have caused serious interference problems with underground metallic infrastructures in Korea. The most serious interference is reported at the pipelines near the depot areas. Our field survey proves that this phenomena is mainly due to the missing of dedicated rectifiers for mainline, depot and/or workshop areas. Because it takes so much time and costs too much to replace the traction power system, we consider a stray current confinement method which collects the stray currents and drains them to the negative terminal of the rectifier. This can be realized by installing a stray current collecting wire along the depot boundary. Moreover, we found the stray current collecting reinforcement bar located beneath the rails of concrete slab tracks. Using this bar, we arc going to draing the stray currents from mainline rails. In this paper we show the result of field survey on railroad facilities and present the stray current confinement method under field test.

  • PDF

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

A Study on the Dimension Design of Ferrite Magnet DC Motor (페라이드 자석 직류전동기의 치수 설계에 관한 연구)

  • 김덕근;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.155-165
    • /
    • 1989
  • In this paper, design equations for the calculation of the dimensions and characteristics of the ferrite magnet DC motor are derived. Through the computer iterative calculation applying the parameter survey method with those equations, the design method is presented. The following facts and the propriety of the design method are identified by comparing with the computer simulation results and dimension elements for the proposed motor. (1) The dimension ratio and the pole arc ratio as simulation parameters are in close connection with the dimension elements and motor performance, and those values of the parameter are important factor in determining the reasonable dimension of the motor. (2) It is proved that the minimization of the ferrite magnet volume is possible by representing the permeance coefficient as a function of the flux density ratio only. (3) It is shown that the torque equation suggested by introducing the copper loss area density of the conductors located in the slot is available in the determination of motor dimensions.

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.

Induced Polarization Surveys of Contaminants and Introduction to Case Studies (오염원에 대한 유도분극탐사 반응 및 사례 소개)

  • Kim, Bitnarae;Caesary, Desy;Yu, Huieun;Cho, AHyun;Song, Seo Young;Cho, Sung Oh;Joung, Inseok;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.86-100
    • /
    • 2020
  • Analyzing and monitoring environmental contaminants based on geophysical exploration techniques have become important and it is now widely applied to delineate spatial distribution geophysical characteristics in wide area. Among the techniques, induced polarization (IP) method, which measures polarization effects on electrical potential distribution, has drawn much attention as an effective tool for environmental monitoring since IP is sensitive to changes in biochemical reactions. However, various reactions stemming from the presence of multiple contaminants have greatly enhanced heterogeneity of polluted sites to result in highly variable electrical characteristics of the site. Those contaminants influence chemical and physical state of soil and groundwater to alter electrical double layer, which in turn influences polarization of the media. Since biochemical reactions between microbes and contaminants result in various IP effects, IP laboratory experiments were conducted to investigate IP responses of the contaminated soil samples under various conditions. Field IP surveys can delineate the spatial distribution of contamination, while providing additional information about electrical properties of a target medium, together with DC resistivity. Reviewing IP effects of contaminants as well as IP surveys can serve as a good starting point for the application of IP survey in site assessment for environmental remediation.

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.