• Title/Summary/Keyword: Electrical Conductivity (EC)

Search Result 385, Processing Time 0.025 seconds

Effects of Temperature and EC Concentrations on the Growth and the Sporangial Development of $Phytophthora$ sp. in Paprika Cultivation (온도와 EC 농도가 파프리카 역병 생장과 유주자낭 형성에 미치는 영향)

  • Lee, Jung-Han;Jeong, Sung-Woo;Jo, Dong-Cheon;Bae, Dong-Won;Kwak, Youn-Sig
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • In the present study, it was performed that the influences of temperatures and electrical conductivity on the mycelial growth and formation of zoosporangium of the $Phytophthora$ sp. in paprika nutriculture. We investigated mycelial growth of $Phytophthora$ sp. at different temperatures. Morphological characteristics of the isolated pathogen from paprika were typically similar to those of $Phytophthora$ sp. such as no septa and formation of zoosporangia. Optimum growth temperature of the pathogen was $25^{\circ}C$. At $20^{\circ}C$, $30^{\circ}C$ and $15^{\circ}C$, the mycelium growth deceased, respectively. EC level of nutrient solution the mycelial growth was increased EC 0.5 up to $1.5dS{\cdot}m^{-1}$ and reduced 2.0 up to $3.5dS{\cdot}m^{-1}$. The formation of sporangia was negatively correlated with EC, and the formation of sporangia were highly inhibited at EC $4dS{\cdot}m^{-1}$.

Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture (딸기 수경재배에서 시들음병 발생에 배양액 pH와 EC 효과)

  • Nam, Myeong Hyeon;Lee, Hee Chul;Kim, Tae il;Lee, Eun Mo;Yoon, Hae Suk
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof) is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC) on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at $25^{\circ}C$ pH 7 and lowest at $20^{\circ}C$, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.

Assessment of Biological Toxicity Monitoring in Water Using Sulfur Oxidizing Bacteria (하천수의 생태독성을 파악하기 위한 황산화미생물의 이용가능성 평가)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.170-174
    • /
    • 2012
  • BACKGROUND: Inappropriate discharge of wastewaters and industrial effluents are becoming detrimental to the aquatic environment. The presence of toxic substances on wastewaters can be detected by physicochemical and biological methods. However, physicochemical methods do not give any information about biological toxicity. Therefore, in this study we tried to detect the presence of toxic substance on waters using sulfur-oxidizing bacteria (SOB) as a bioassay. MATERIALS AND RESULTS: The SOB biosensor was first stabilized using synthetic stream water and operated in both continuous and semi-continuous mode. When the SOB biosensor was operated in continuous mode, the effluent electrical conductivity (EC) stabilized at~1.72 dS/m. While in the case of semi-continuous, the EC stabilized at~0.6 dS/m. The SOB system was also operated at different reaction times to ascertain the shortest reaction time for monitoring the toxicity. Finally, the SOB biosensor was fed with nitrite as toxic substance. When 5 mg/L of nitrite was added to the SOB system, the EC decreased immediately. However, the EC recovered after few cycle. CONCLUSION: This study shows that the SOB biosensor can be used as warning system to protect aquatic environment from hazardous materials. Although SOB biosensor can not give specific information about the toxic substances, it can assess whether the water is toxic or not.

Development of a Supporting System for Nutrient Solution Management in Hydroponics I. Fertilizer Combination and Electrical Conductivity(EC) Prediction (양액재배를 위한 배양액관리 지원시스템의 개발 I. 배양액의 배합 및 전기전도도(EC)의 예측)

  • 손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.52-60
    • /
    • 1992
  • The optimum management of nutrient solution needs the effective combination of fertilizers as well as the accurate control of nutrient solution. This study was attempt to make a supporting system for effective fertilizer combination by using computer and also to develop a EC predicting equation for keeping the EC of solution within the allowable range after application of combined fertilizers. The supporting system consists of three parts : (1) data bases, (2) rules for deciding the kinds and amounts of fertilizers and (3) main control. With input data, the main control automatically constructs the network connecting the related data bases and subsequently executes the operation of searching proper fertilizers through it. For more effective searching, fertilizers are classified into two levels(level 1 and level 2) in consideration of solubility, price, and frequency in use, and searched in that order. The EC prediction equation, a extended form of the Robinson and Stroke's theoretical equation only available for a binary electrolyte, is suggested for predicting the EC of the nutrient solution containing many kinds of inorganic compounds. The comparison of predicted and measured ECs showed good agreements with the high correlation between the predicted EC decrement by ion interaction and the actual one(limiting EC minus measured EC).

  • PDF

Application of SP and Pole-pole Array Electrical Resistivity Surveys to the Seawater Leakage Problem of the Embankment (방조제 누수지점 탐지를 위한 SP및 단극배열 전기비저항탐사의 적용)

  • 송성호;이규상;김진호;권병두
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.417-424
    • /
    • 2000
  • We applied SP monitoring and resistivity surveys using the pole-pole electrode array to seawater leakage problems in the Youngsan estuary dam and the Eoeun embankment to estimate and detect the zone of seawater leakage. The embankment is generally affected by tidal variation and has low resistivity characteristics due to the high saturation of seawater. For this reason, SP monitoring and the pole-pole array resistivity surveys, which are relatively more effective to the conductive media, were carried out to delineate the leakage zones of sea water through the embankment. We checked out electrical conductivity (EC) and temperature variations along the inner part of Youngsan estuary dam to detect the zone of seawater leakage and found that the measured EC value agreed to that of seawater in the leakage zone and the temperature was lower than that of the vicinity of leakage zone. SP monitoring results were coincided with tidal variations at each embankment. At the leakage zones in the Youngsan estuary dam and the Eoeun embankment, SP anomalies are in the range of -60~-85 mV and -20~-50 mV, respectively, and true resistivity values obtained by 2-D inversion are 3~15 ohm-m and below 0.3 ohm-m, respectively. Both SP monitoring and the pole-pole array resistivity method are found to be quite effective for investigation of seawater leakage zones in the embankment.

  • PDF

The Effect of Zr Element on the Properties of Continuous Casting and Rolling Materials for Al - 0.11 wt.%Fe Alloy (Al-0.11Fe계 합금에서의 Zr, Sc원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Ji-Sang;Kim, Jin-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1099-1104
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especailly, the effect of a very small amount of Zr, Sc element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr, Sc addition up to 0.3 wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75{\sim}20.05\;kgf/mm^2$ and $420{\sim}520\;^{\circ}C$, was obtained at 0.3 wt.% Zr, Sc addition, respectively. Particles of the $Al_3Zr$ and $Al_3Sc$ phase affected the ambient and elevated-temperature strength of the alloys.

The Effect of Zr element on the Properties of Continuous Casting and Rolling Materials for Al-0.11 wt.%Fe Alloy (Al-0.11 Fe계 합금에서의 Zr원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Han-Eol;Kim, Han-Sik;Kim, Ji-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.519-520
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especially, the effect of a very small amount of Zr element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr addition up to 0.3wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75\;kgf/mm^2$ and $420^{\circ}C$, was obtained at 0.3 wt.% Zr addition, respectively.

  • PDF

Effect of Nutrient Solution Concentration on the Growth and Mineral Uptake of Various Wrap-up Vegetables and Herbs Grown with Mixed Planting in DFT Hydroponics (담액 수경재배 시 양액농도 처리가 혼식한 쌈 채소류와 허브류의 생육과 무기양분 흡수에 미치는 영향)

  • Seo, Tae-Cheol;Rho, Mi-Young;Gang, Nam-Jun;Lee, Seong-Chan;Choi, Young-Hah;Yun, Hyung-Kweon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.395-406
    • /
    • 2007
  • The twenty seven wrap-up vegetables (13 Compositae, 14 Brassicaceae) and seven herbs (6 Labiatae, 1 Umbelliferae) were cultivated with a deep flow technique (DFT) hydroponic beds and treated with 3 levels of nutrient solution concentrations of 1.2, 2.4, and $3.6dS{\cdot}m^{-1}$ in summer and autumn season. The pH and electrical conductivity (EC) change of nutrient solution, fresh weight, and mineral contents of plants were investigated. The pH was maintained lower in high electrical conductivity (EC) treatment and in summer than autumn. EC of nutrient solution in EC $3.6dS{\cdot}m^{-1}$ treatment increased up to $4.8dS{\cdot}m^{-1}$ during the growing period in summer season. The growth of tested plants showed high variations by plant species and nutrient solution concentrations. The coefficient variation (CV) of the shoot fresh weight of plants was higher in summer than autumn. The growth of Compostiae and herbs was better at EC $1.2dS{\cdot}m^{-1}$, and 14 Brassicaceae was better at EC $2.4dS{\cdot}m^{-1}$ in summer. In autumn, the growth was better at EC $2.4dS{\cdot}m^{-1}$ in all plants except kale 'TBC F1' and red rape 'honchaetae'. In mineral contents, total nitrogen and potassium were higher in autumn than summer. Total nitrogen, potassium, calcium, magnesium were higher in Brassicaceae than others. Iron and manganese, however, were higher in Compositae. As the results, this study suggests that mixed planting of 27 wrap-up vegetables and 7 herbs in DFT hydroponics in two seasons was possible and EC $1.2dS{\cdot}m^{-1}$ in summer and EC $2.4dS{\cdot}m^{-1}$ in autumn be recommended as for the nutrient solution concentration to produce them safely year round.

The Comparison of Electrical Conductivity for Soil Solutions Extracted in Field Capacity and Saturation-Paste (포장용수량과 포화 반죽 토양용액의 전기전도도 비교)

  • Lee, Ye-Jin;Lee, Jong-Sik;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • Estimating the electrical conductivity of the saturation-paste (SP) is a common method to assess soil salinity. To assess soil salinity realistically, it is important to extract soil solution under field capacity. However, few studies on salinity assessment have been conducted for soil solution extracted under field capacity (-33 kPa; FC) moisture condition due to difficulty in soil solution extraction. This study was conducted to evaluate whether saturation-paste can represent field condition. Soil solutions were extracted from 22 soils in the plastic film house (PFH) and 18 soils in the reclaimed land (RL) at saturation and field capacity moisture conditions. Those were analyzed for pH, EC, cations ($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) and anions ($Cl^-$, ${NO_3}^-$, ${PO_4}^{3-}$, ${SO_4}^{2-}$). Both cations and anions of soil solution extracted from FC showed high correlations with ions extracted from SP in the PFH and the RL, except for ${NO_3}^-$, ${PO_4}^{3-}$ in the RL. Results of the t-test, the ECe and $EC_{FC}$ were not significant at significance level 0.05. The slopes of the equations between $EC_{FC}$ and ECe at more than sand 50% soils were higher than less than sand 50% soils, and differences of saturation percentage between SP and FC showed larger as increasing sand percentage. EC was related to soil water retention by soil texture. To determine the EC, soil texture and other soil properties which effect the soil moisture should be considered.

Estimation of Conversion Factors for Electrical Conductivities Measured by Saturation-Paste and 1:5 Water Extraction (포화 및 1:5 추출법으로 측정한 토양 염도간의 환산 계수 추정)

  • Lee, Seung-Heon;Hong, Byeong-Deok;An, Yeul;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.193-199
    • /
    • 2003
  • Electrical conductivity (EC) is a major indicator of soil salinity. Measurement of EC in saturation-paste extract of soil (ECe) is a standard way to evaluate soil salinity. However, many of the data on soil salinity have been obtained by measuring the EC of 1:5 soil-water extract (EC1:5) or salt percentage which is calculated from EC1:5 by multiplying a conversion factor. We analyzed 90 soil samples collected from 9 reclaimed tidelands in Korea, and derived relationships between ECe and dilution factors (DF1:5) which can convert EC1:5 to ECe in 2 soil textural groups at 5 salinity levels. Regression equations between ECe and DF1:5 were DF1:5 = 1.3624In(ECe) + 5.1386($r^2=0.37^{***}$) for soils of more than 50% silt content, DF1:5 = 1.9505In(ECe) + 5.3679($r^2=0.66^{***}$) for soils of less than 50% silt content. And the relationship for all soils investigated was DF1:5 = 1.4001In(ECe) + 5.4865($r^2=0.51^{***}$). From the relationships, conversion factors for calculation of ECe from EC1:5 of salt percentage data were estimated for soils of different textures and salinity levels.