• 제목/요약/키워드: Electric-hybrid driving

검색결과 134건 처리시간 0.025초

2륜 및 4륜 구동 하이브리드 전기 자동차의 후방향 시뮬레이션 기반 연비 및 성능 평가 (Evaluation of Fuel Economy and Performance for 2WD and 4WD Hybrid Electric Vehicle Based on Backward Simulation)

  • 정종렬;김형균;김기영;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.174-182
    • /
    • 2014
  • Recently, not only common types of hybrid electric vehicle (HEV) such as series or parallel but many other types of HEVs including 4WD hybrid electric vehicle have been developed and released. In this study, analysis of fuel economy and driving performance for 2WD and 4WD HEV are conducted using backward simulation based on dynamic programming. To analyze the characteristics of 4WD HEV, tire slip model based on vehicle dynamics was applied to the backward simulation program. As a result, 2WD HEV shows better fuel economy than 4WD HEV because of relatively simple configuration. However, in a severe road condition, 4WD HEV shows better driving performance that 2WD HEV had about 6% of impossible time to follow the driving cycle though the 4WD HEV had no impossible time.

Parametric investigation of a hybrid vehicle's achievable fuel economy with optimization based energy management strategy

  • Amini, Ali;Baslamisli, S. Caglar;Ince, Bayramcan;Koprubasi, Kerem;Solmaz, Selim
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.105-121
    • /
    • 2018
  • The hybrid electric powertrain is a robust solution that allows for major improvements in both fuel economy and emission reduction. In the present study, a through-the-road hybrid vehicle model with an electric motor driving the rear axle and an Internal Combustion Engine (ICE) driving the front axle has been constructed. We then present a systematic method for the determination of a real time applicable optimal Energy Management Strategy (EMS) for a hybrid road vehicle. More precisely, we compare the performance of rule-based EMS strategies to an optimization-based strategy, namely ECMS (Equivalent Consumption Minimization Strategy). The comparison is conducted in parallel with a parameterization of the size of the internal combustion engine and the implementation of a Continuously Variable Transmission (CVT) that allows following the line of best fuel economy. For the FTP-75 driving cycle, the constrained engine On-off control algorithm is shown to offer a 28% improvement potential of fuel consumption compared to the conventional internal combustion engine while the ECMS strategy achieves an improved potential of nearly 33%.

하이브리드 자동차 구동 특성 분석을 위한 HIL 방식의 구현 (Implementation of HIL Method to Analyze Driving Characteristic of Hybrid Electric Vehicle)

  • 오성철
    • 한국실천공학교육학회논문지
    • /
    • 제3권2호
    • /
    • pp.100-105
    • /
    • 2011
  • HIL(Hardware-in-the-Loop) 개념을 적용하면 하이브리드 자동차용 부품의 자동차 환경에서의 특성을 부품을 차량에 장착하지 않고도 평가 할 수 있게 된다. 본 논문에서는 특정 전동기를 하이브리드 자동차용 전동기로 사용하였을 경우 자동차의 구동 특성을 분석할 수 있는 HIL 방식을 구현하기 위한 부품 특성 시험. 구동특성 시뮬레이션, 장치 구성 방법을 설명한다. 시험장치는 자동차 시뮬레이터, 부하장치로 구성되며 시뮬레이션에서 사용된 차량제어기를 직접 차량제어기로 사용하게 된다. 부하장치는 차량의 동적 특성을 모의하게 된다. 특히 기존의 차량의 관성을 모의하기 위한 기계적 관성부하를 사용하지 않고 부하장치를 능동적으로 제어 하여 차량에 적용되었을 경우의 전동기 특성을 구할 수 있다. 시험 전동기가 병렬방식 하이브리드 자동차에 적용되었을 경우의 전동기의 실제 특성을 구할 수 있다. 제안된 방식은 하이브리드 자동차의 구동 특성을 교육하기 위한 교육매체로 사용 될 수 있다.

  • PDF

임무장비를 고려한 직렬형 하이브리드 차량의 추진시스템 최적화 연구 (A Study on Optimization of Propulsion Systems for Series Hybrid Electric Vehicles Considering Mission Equipments)

  • 장명언;김상만;한규홍;여승태
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, the study was conducted on the subject of the hybrid electric vehicles used by the military, and optimized the propulsion system for fuel economy considering energy supply to the mission equipments. For the analysis of the vehicles, a method based on the geometry and some assumptions was applied with basic vehicle dynamics. The sources of energy supply in the military hybrid electric vehicles are an engine, a battery and an ultra-capacitor. The optimal operation point among an engine, a battery and an ultra-capacitor can be found by minimizing energy consumption of driving power train and mission equipments. In the study, it was possible to find the optimal propulsion system by comparing fuel efficiency of the vehicles during the driving cycle.

다양한 운전조건에 따른 하이브리드 자동차의 연비 특성 연구 (The study for fuel economy characteristics of hybrid electric vehicle (HEV) according to the driving condition)

  • 이민호;김성우;김정환;김기호;정충섭;노경완;장광식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.104-104
    • /
    • 2011
  • The fuel economy estimates essentially serve two purposes : to provide consumers with a basis on which to compare the fuel economy of different vehicles, and to provide consumers with a reasonable estimate of the range of fuel economy they can expect to achieve. The current fuel economy label values utilize measured fuel economy over city driving cycles. However, this test driving mode can not be evaluated the variety factor of the real-world. These factors include differences between the way vehicles are driven on the road and over the test cycles, air conditioning use, widely varying ambient temperature and humidity, widely varying trip lengths, wind, precipitation, rough road conditions, hills, etc. The purpose of this paper is to account for three of these factors on the fuel economy : 1) on-road driving patterns (i.e. higher speeds and more aggressive driving (higher acceleration rates)), 2) air conditioning, and 3) colder temperatures. The new test methods will bring into the fuel economy estimates the test results from the five emissions tests in place today : CVS-75, HWFET, US06, SC03 and Cold CVS-75. Based on these new test methods, this paper discusses the characteristics of driving condition on Hybrid electric vehicle (HEV). And this paper assesses the fuel economy label of HEV.

  • PDF

직렬형 HEV의 엔진/발전기-배터리 연계운전 방안 (The Scheme for Efficient Driving of Engine/Generator-Battery in Series HEV)

  • 박영수;허민호;안재영;강신영;김광헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.423-426
    • /
    • 1999
  • This paper describes a driving scheme of the series hybrid electric vehicle that we have developed. Both series HEV and parallel HEV are well known. We chose series HEV because it provides good energy efficiency in urban driving and operates in all-electric mode in performance. And engine-Generator is driven at constant speed with constant load to maintain the low emission. And the battery supplies power during high-load and receive energy during low-load

  • PDF

연비 평가를 위한 6속 DCT기반 HEV 성능 시뮬레이터의 개발 (Development of Performance Simulator for 6-speed DCT-based Hybrid Electric Vehicle to Evaluate the Fuel Economy)

  • 백진주;이용관;박진현;한관수;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.1-6
    • /
    • 2013
  • With aggravation of environmental contamination and energy resource exhaustion, Hybrid Electric Vehicles (HEV) that can be economically operated with low fuel consumption are receiving greater attention. For performance improvement of such HEV, the development of efficient transmission can be seen as one of core technologies such as performance of components and driving strategy. Dual clutch transmission (DCT) is actively studied as a transmission type for HEV due to its advantages of having excellent power transmission efficiency based on manual transmission characteristic, resolving the problem of power interruption, and realizing driving convenience of automatic transmission (AT). In this paper, one diesel HEV equipped with 6-Speed DCT, modelled using MATLAB/Simulink, and a performance simulator developed for this vehicle are introduced. Driving simulation with driving cycles such as FTP75 and NYCC was performed using the developed performance simulator, and the simulated results regarding state of charge and fuel economy, when AT and DCT are applied to this diesel hybrid vehicle respectively, are compared. This performance simulator can be utilized to develop a control algorithm for improving the fuel economy of HEV with DCT.

병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어 (Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles)

  • 박준영;심현성
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석 (Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems)

  • 임원식;김남웅;최완묵;박성천
    • 한국생산제조학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.