• 제목/요약/키워드: Electric wire explosion

검색결과 25건 처리시간 0.025초

액중 전기선폭발법으로 제조된 구리 나노콜로이드의 특성 평가 (Evaluation of Cu nano-colloid prepared by electrical wire explosion in liquid phase)

  • 윤재철;양상선;유지훈
    • 한국입자에어로졸학회지
    • /
    • 제6권1호
    • /
    • pp.37-46
    • /
    • 2010
  • Cu nano-colloid was prepared by wire electric explosion process under de-mineralized water and anhydrous ethanol. To control the properties of Cu nano-colloid, experimental conditions such as diameter of Cu wire and applied voltage were changed. The optimal Cu nano-colloid was prepared when the 0.1mm diameter of Cu wire with the applied voltage of 2000 V was used. The shape of Cu particles in colloid was spherical and the XRD result revealed that the phase of Cu particles was cubic phase. About 20nm Cu nanoparticles with high crystallinity were successfully prepared using wire explosion process under anhydrous ethanol and they showed more than 100 hours dispersion stability.

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.

초고속가열에 의한 금속세선의 폭발현상에 관한 연구 (The Study on Explosion Phenomena of a Metal Wire by Rapid Heating in Water)

  • 장인선;김종수
    • 수산해양기술연구
    • /
    • 제33권1호
    • /
    • pp.27-37
    • /
    • 1997
  • The aim of the present study is to investigate experimentally the mechanism of an exploding wire in water and also to observe the bubble motion induced by an exploding wire. The experiment of an exploding wire is carried out in a water tank. As a metallic wire, a tungsten wire of 0.2mm in diameter and 10mm in length is employed. The electric energy of 50-300J is fed to the wire from a capacitor of 100$\mu$F charged up to 1-2.5kV. The explosion is recorded by a CCD camera with the resolution of 1$\mu$sec. The explosion process of metallic wire is divided into three phases. Phase 1 : As the voltage is applied to the wire, the temperature increases due to Joule heating and the wire emits light. Phase 2 : Then the wire melts and the cylindrical plasma is formed between the electrodes. Up to this stage, strong light emission is observed. Phase 3 : The light emission goes out and a vapor bubble begins to grow spherically. The radius of a bubble oscillates in time, but the amplitude of oscillation diminishes in several cycles.

  • PDF

전기선폭발법으로 제조한 나노 W(텅스텐) 분말의 환원처리 및 방전플라즈마소결에 의한 조밀화 (Reduction and Spark Plasma Sintering of the W(Tungsten) Nanopowder Produced by the Electric Explosion of Wire Process)

  • 김지순;김철희;박은주;권영순;김진천;이성호;정동익
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.269-277
    • /
    • 2006
  • [ ${\beta}-W(W_3O)$ ] oxide layer on the surface of each W(tungsten) nanopowder produced by the electric explosion of wire(EEW) process were formed during the 1vol.% air passivation process. The oxide layer hindered sintering densification of compacts during SPS process. The oxide phase was reduced to the pure W phase during SPS. The W nanopowder's compacts treated by the hydrogen reduction showed high sintered density of 94.5%. after SPS process at $1900^{\circ}C$.

Application of A High Voltage Capacitor Charger to Nanosize Powder Production

  • Jeong I.W.;Rim G.H.;Jung Y.H.;Kim K.S.;Lee H.S.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.727-730
    • /
    • 2001
  • Electrical wire explosion (EWE) is characterized by great current density and rapid metal heating, which make itself an ideal tool for nano-materials manufacturing technology. The EWE requires a high voltage electric-energy source. In the current experimental set-up a high voltage capacitor is used for the purpose. Hence, a power supply that is capable of charging the capacitor to a target voltage is required. One of the special requirements is the precise controllability of the stored energy level in the capacitor. Through this study a high voltage capacitor charger using a series resonant converter technology has been developed for the production of nanosize powder. A load capacitor of $32{\mu}F$ can be charged up to 20kV by the developed capacitor charger and discharged through a gap switch and a copper wire.

  • PDF

가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결 (Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid)

  • 김진천;구왕회;유주식
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

전기폭발방식을 이용한 동(Cu) 미분 제조 및 인가전압의 영향 (The effects of applied voltage on copper powder manufactured by electric explosion)

  • 이후인;김원백;서창열;손정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.474-475
    • /
    • 2007
  • Wire electrical explosion(WEE) has been used for the production of fine metal particles. In WEE, electrical powder was stored and compressed into capacitor and released to produce fine particles through evaporation and condensation. In this study, the effect of applied voltage on the size of copper powders was investigated. High tension was added up to the explosion device by dividing 4 steps. At voltages lower than 5.2 kV, the fraction of powders finer than $44{\mu}m$ was almost negligible. The effectiveness of explosion increased sharply with increased voltage over 5.8 kV. At the highest voltage of 6.4 kV, more than 80% of explosion products were finer than $44{\mu}m$.

  • PDF