• Title/Summary/Keyword: Electric vehicle batteries

Search Result 166, Processing Time 0.027 seconds

Flight Range and Time Analysis for Classification of eVTOL PAV (eVTOL PAV 유형별 항속거리 및 항속시간 분석)

  • Lee, Bong-Sul;Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.73-84
    • /
    • 2020
  • To overcome ground congestions due to growing number of cars, a lot of companies have proposed personal aerial vehicle (PAV). Among PAV, electric vertical take-off and landing (eVTOL) aircrafts capable of vertical take-off and landing with electric power are drawing attention, and their configurations vary from multicopters to tilt ducted fans. This study tries to analyze the characteristics of each eVTOL design configurations. Parasite drag was calculated using component build up method for Vahana, Aurora, Volocopter representing each eVTOL PAV type of tilt-wing, compound, and multicopter. Wetted area and induced drag was calculated using OpenVSP and XFLR5 that are aircraft design and aerodynamic analysis software. The batteries used in the eVTOL PAV was assumed as Tesla 2170 batteries and flight ranges were calculated. Also, energy consumption and maximum flight time for the given mission profile including take-off and landing, cruising segments were compared for each eVTOL.

Development of Real Time Data Acquisition Unit for a projectile Using RF (RF를 이용한 발사체를 위한 실시간 데이터 취득 장치 구현)

  • Hong, Il-Hee;Lee, Seung-Min;Kim, Yang-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper proposes a new approach to provide RF communication channel and electric power transmission to overcome the weakness of conventional tests, which may cause several problems. When an RF communication device is used to communicate between launch vehicle and launch complex in stead of using harness umbilical, it may draw the simplicity of ground test equipments, cost-saving, and the reduction of test time. In addition, if an RF power transmission device is adopted to supply on-board power of launch vehicle, it can replace expensive on-board batteries, which may be degraded easily by the repeated charging and discharging processes.

The design of the Sliding Mode Controller of Voltage Bus Conditioner for a DC Power Distribution System with multiple parallel loads in the Electrical Vehicles (다중 병렬 부하를 갖는 전기 자동차의 DC 배전 시스템을 위한 Voltage Bus Conditioner의 슬라이딩 모드 제어기 설계)

  • Chang, Han-Sol;Jeon, Yong-Sung;La, Jae-Du;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1141-1142
    • /
    • 2011
  • An electrical vehicle (EV) is a huge issue in the automotive industry. The EV have many electrical units: electric motors, batteries, converters, ets. The DC power distribution system (PDS) is essential for the EV. The DC PDS offers many advantages. However, multiple loads in the DC PDS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC PDS. The VBC is used to mitigate the voltage transient on the bus. In this paper, sliding mode controller (SMC) is designed for the VBC of DC PDS in the EV. The simulation results by PISM simulation package are presented for validating the proposed control technique.

  • PDF

Preparation of nano composite metal-oxide electrode and its application for superrcapacitor (나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용)

  • Kim, Hong-Il;Lee, Ju-Won;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

SOC Observer based on Piecewise Linear Modeling for Lithium-Polymer Battery (구간선형 모델링 기반의 리튬-폴리머 배터리 SOC 관측기)

  • Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2015
  • A battery management system requires accurate information on the battery state of charge (SOC) to achieve efficient energy management of electric vehicle and renewable energy systems. Although correct SOC estimation is difficult because of the changes in the electrical characteristics of the battery attributed to ambient temperature, service life, and operating point, various methods for accurate SOC estimation have been reported. On the basis of piecewise linear (PWL) modeling technique, this paper proposes a simple SOC observer for lithium-polymer batteries. For performance evaluation, the SOC estimated by the PWL SOC observer, the SOC measured by the battery-discharging experiment and the SOC estimated by the extended Kalman filter (EKF) estimator were compared through a PSIM simulation study.

Time-sharing Charge System for Equalization of Lead-Acid Battery (전기자동차용 납축전지의 시분할 균등충전기)

  • 강신영;김광헌;임영철
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.94-101
    • /
    • 1997
  • This paper proposes the equalizing charger of series connected batteries which are controlled by the time-sharing method. One-chip microprocessor dectcts the terminal voltage of each battery and then determines the charging time inversely proportional to the terminal voltage so that it decrease the un¬balanced capacity. This system is compact and light, therefore it can be applied to portable equipment such as charger for electric vehicle. And it's so effective as to prevent from overcharging which causes their life to shorten.

  • PDF

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

Development of a Lifting Utility with Balance-controlled Platform (작업대 수평유지식 과수원 고소작업차 개발)

  • Jang, Ik-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • Facing the current hikes of labor wage and high oil price, it is needed to have energy-saving machinery which also enables us precise farm operations. Thus, it was necessary to develop a safe machine which allows secure and pleasant works along orchard slopes. In this study, a lifting utility with balance-controlled platform was developed. The platform utility could maintain to level the workbench while driving along slopes. Even the machine body was driven at the tilt angle ranges of ${\pm}20^{\circ}$, the platform bench could be maintained within ${\pm}0.5^{\circ}$ of a gimbal angle. In addition, the machine lifted up to 2.0 m using an electric-hybrid driving mechanism with a low noise. A tandem hybrid power source was developed with a DC 72 V, 100 AH for the Deep-Cycle batteries, charged with 3.5 kW gasoline generator as an auxiliary power source. HST, which is one of the CVT's, was adopted as a transmission device, and a crawer track was used for the safety of the vehicle against tip-over. The maximum lifting height of platform was is 2,500 mm, and the maximum extendable width was 2,900 mm.

Investigation of a SP/S Resonant Compensation Network Based IPT System with Optimized Circular Pads for Electric Vehicles

  • Ma, Chenglian;Ge, Shukun;Guo, Ying;Sun, Li;Liu, Chuang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2359-2367
    • /
    • 2016
  • Inductive power transfer (IPT) systems have become increasingly popular in recharging electric vehicle (EV) batteries. This paper presents an investigation of a series parallel/series (SP/S) resonant compensation network based IPT system for EVs with further optimized circular pads (CPs). After the further optimization, the magnetic coupling coefficient and power transfer capacity of the CPs are significantly improved. In this system, based on a series compensation network on the secondary side, the constant output voltage, utilizing a simple yet effective control method (fixed-frequency control), is realized for the receiving terminal at a settled relative position under different load conditions. In addition, with a SP compensation network on the primary side, zero voltage switching (ZVS) of the inverter is universally achieved. Simulations and experiments have been implemented to validate the favorable applicability of the modified optimization of CPs and the proposed SP/S IPT system.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.