• Title/Summary/Keyword: Electric vehicle

Search Result 2,209, Processing Time 0.03 seconds

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

Analysis of Flux Weakening Operating Regions for a PM Synchronous Motor in HEV by considering Back EMF Harmonics (HEV용 영구자석동기전동기의 유기전압 고조파를 고려한 약자속 운전 영역해석)

  • Cho, Kwan-Yuhl;Woo, Byung-Guk;Kim, Gyoung-Man;Kang, Chan-Ho;Shin, Hee-Keun;Yoon, Byung-Chul;Park, Min-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.152-161
    • /
    • 2011
  • An interior permanent magnet synchronous motor(IPMSM) has been applied to the electric vehicle due to its high efficiency, compact volume, and wide operating speed ranges. This paper presents the analysis of the flux weakening operating regions at high speeds for the IPMSM that has back emf harmonics. The effect of the back emf harmonics on the motor speed and the maximum torque is analyzed. Also the dq currents for maximum torque operation under the voltage and the current limit conditions are analyzed. The conventional analysis and the presented analysis for the flux weakening operating regions are compared and the maximum torque - speeds characteristics for both analysis are verified through the experiment.

A Study on the Design Procedure of the Eight Pole Magnetic Bearings for the Inner-rotor and the Outer-rotor Type

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byung-Song;Lee, Su-Gil;Kim, Jae-Hee;Jung, Shin-Myung;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1424-1430
    • /
    • 2013
  • This paper presents design procedure of the magnetic bearings used for high-speed electric machines and flywheel energy storage systems. Magnetic bearing can be categorized by inner-rotor type and outer-rotor type according to the position of the rotary disc. These two types are applicable based on application environments such as application space, required attraction force, and controllability. Magnetic bearing is generally designed based on the ratio (geometrical coefficient or geometrical efficiency) of pole width to rotor journal radius but proper ratio is only decided by the analysis. This is the difficulty of the magnetic bearing design. In this paper, proper design technology of the inner-rotor type and outer-rotor-type eight pole magnetic bearings is introduced and compared with the FEM analysis results, which verifies the proposed design procedure is suitable to be applied to the design of the magnetic bearings for the industrial applications and flywheel energy storage system.

Transmission Interval Optimization by Analysis of Collision Probability in Low Power TPMS (저전력 운영 TPMS에서 충돌 확률 분석을 통한 전송주기 최적화)

  • Lim, Sol;Choi, Han Wool;Kim, Dae Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.364-371
    • /
    • 2017
  • TPMS is a vehicle electric system that measures the air pressure of a tire, and informs the driver of current tire states. The TPMS sensor typically uses unidirectional communication for small size, light weight, and low power. The transmission period of the sensor indicates the service quality of monitoring the tire. In order to determine the optimal transmission period, frame collision probability and the life time of the sensor should be analyzed. In this paper, collision probability model using Venn diagram is designed in low power TPMS with the normal and warning mode. And the life time and a collision probability were analyzed with the ratio(n) of the normal mode to warning mode transmission period. As a result, $T_{nP}=31sec$ and $T_{wP}=2.4sec$ at 5 years, and $T_{nP}=71sec$ and $T_{wP}=2.5sec$ at 7 years.

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

Characteristic Analysis of Inductive Power Transfer System for PRT (소형궤도 열차용 유도 전력 전송 시스템 특성해석)

  • Min, Byung-Hun;Lee, Byung-Song
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.35-43
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and son ideas for power collector design to improve tile power transfer performance are presented. And also, the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency is shown. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system electrical power is transferred from a primary winding in the form of a coil or tract to one or more isolated pick-up coils that my relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, we will show you various characteristic of inductive power transfer system as double layer construction of secondary winding, which was divided in half to increase both output current and output voltage, a model of power collector and parallel winding structure, a model of concentration/ decentralization winding and the effects of parameter and operational frequency variation.

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.

Hazard Identification and Testcase Design Method based on Use Case and HAZOP (사용사례와 HAZOP 기반의 위험원 식별 및 테스트케이스 설계 방안)

  • Do, Sungryong;Han, Hyuksoo
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.662-667
    • /
    • 2016
  • As electric and electronic control systems have sharply increased in vehicles, safety accident has emerged as an important issue. Therefore, in order to ensure safety of the vehicle, engineers are required to identify the hazards utilizing PHA and HAZOP, etc. in the early phase of development and implement safety mechanisms to prevent them. HAZOP has been widely used in a systematic manner based on guidewords. However, HAZOP identifies malfunctions from the top-level functionality provided by the system, so it cannot sufficiently identify hazards during the system operation. This leads to restrictions in designing testcases, because the safety requirements are derived from only some of the hazards. This research aimed to provide a hazard identification method utilizing Use case description, which defines operation procedure of the system and HAZOP and a testcase design method based on safety requirements. We introduced a case study on Smart Key Control System in vehicles and compared with hazards identification results based on HAZOP, to demonstrate the effectiveness of this study. The result of this study could potentially reduce development cost and increase system quality by adequately identifying hazards and safety requirements and designing the related testcase.

Development of Hydrazine Thruster Latching Valve (하이드라진 추력기 래칭 밸브 개발)

  • Yoon Ho-Sung;Chae Heon-Jung;Lee Jae-Hun;Cho Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.363-367
    • /
    • 2005
  • Latching valves are operated like solenoid valves by open/close command and they maintain final open or close commend without electric power source, so they are widely used in propulsion system of satellite and launch vehicle requiring reliability and being subject of restriction of power. This paper present design and test procedure of latching valve using permanent magnet polarized solenoid, which is developed for 45N Hydrazine propulsion system, to estimate feasibility of design and manufacture of latching valve.

  • PDF

Implementation of Access Control System Based on CAN Communication (CAN통신 기반 출입 통제 시스템 구현)

  • Song, Jongkwan;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.951-956
    • /
    • 2011
  • CAN communication developed for communication between electric control devices in vehicle, was recently applied to automatic breaking devices, and can also be applied to field bus for production automation. Recently, field bus is introduced in engine control etc., for large ship. In this paper, cabin access control system is implemented, based on CAN communication. The cabin access control system based on CAN communication consists of access control server, embedded system based on ARM9, and micro-controller built-in CAN controller. The access control server can be able to manage overall access control system by accessing with manager. And embedded system adopted ARM9 processor transmits access information of RFID reader controller connected with CAN networks to server, also performs access control. The embedded system carry CAN frames to server, so it is used as gateway.