• Title/Summary/Keyword: Electric utility

Search Result 338, Processing Time 0.028 seconds

Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link

  • Terai H.;Sumiyoshi S.;Kitaizumi T.;Omori H.;Ogura K.;Chandhaket S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.668-672
    • /
    • 2001
  • The utility interactive sinewave modulated inverter for the solar photovoltaic (PV) power conversion and conditioning with a new high frequency pulse modulated link is presented for domestic residential applications. As compared with the conventional full-bridge hard switching PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching sinewave modulated inverter with a duty cycle pulse control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching sinewave inverter for solar power conditioner and its operating principle. In addition, this paper proposes a control system to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed from an experimental point of view. A newly developed interactive sinewave power processor which has $92.5\%$ efficiencty at 4kW output is demonstrated. It is designed 540mm-300mm-125mm in size, and 20kg in weight.

  • PDF

A Modified EGEAS Model with Avoided Cost and the Optimization of Generation Expansion Plan (회피비용을 고려한 EGEAS 모형 개발과 전원개발계획의 최적화)

  • 이재관;홍성의
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.1
    • /
    • pp.117-117
    • /
    • 1992
  • Pubilc utility industries including the electric utility industry are facing a new stream of privatization com-petition with the private sector and deregulation. The necewssity to solve now and in the future power supply and demand problems has been increasing through the sophisticated generation expansion plan(GEP) approach con-sidering not only KEPCo's supply-side resources but also outside resources such as non-utility generation(NUG) demand-side management (DSM). Under the environmental situation in the current electric utility industry a new approach is needed to acquire multiple resources competitively. This study presents the development of a modified electric generation expansion analysis system(EGEAS) model with avoided cost based on the existing EGEAS model which is a dynamic program to develope an optimal generation expansion plan for the electric utility. We are trying to find optimal GEP in Korea's case using our modified model and observe the difference for the level of reliabilities such as the reserve margin(RM) loss of load probability(LOLP) and expected unserved energy percent(EUEP) between the existing EGEAS model and our model. In addition we are trying to calculate avoided cost for NUG resources which is a criterion to evaluate herem and test possibility of connection calculation of avoided cost with GEP implementation using our modified model. The results of our case study are as follows. First we were able to find that the generation expansion plan and reliability measures were largely influenced by capacity size and loading status of NUG resources, Second we were able to find that avoided cost which are criteria to evaluate NUG resources could be calculated by using our modified EGEAS model with avoided cost. We also note that avoided costs were calculated by our model in connection with generation expansion plans.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

Development of Optimum Shape Forming Technology of Angle Ring and Cap for 154kV transformer Insulation (154kV급 변압기절연물 앵글링과 캡의 최적성형 기술 개발)

  • Suh, Wang-Byuck;Kim, Jong-Won;Jang, Sung-Ju;Ryu, Jung-Soo;Bae, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.30-30
    • /
    • 2010
  • The Angle Ring and Cap which is called pressboard are settled at primary and secondary coil winding of 154 kV transformer that can reduce effectively distance of insulation. As it has not manufactured pressboard of Angle Ring and Cap for high voltage grade, insulation components industry especially high voltage transformer has not participate in a competition with worldwide yet. That's why is difficult to make an specialized shape of insulation components of high voltage grade. At first, it is very important to make an utility of deformation manufacturing for high voltage transformer insulation components by itself. Therefore it has finally completed to make an deformation manufacturing utility using an special analysis tools. In this paper, developed insulation components was investigates in tensile strength is introduced.

  • PDF

Development of a Lifting Utility with Balance-controlled Platform (작업대 수평유지식 과수원 고소작업차 개발)

  • Jang, Ik-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • Facing the current hikes of labor wage and high oil price, it is needed to have energy-saving machinery which also enables us precise farm operations. Thus, it was necessary to develop a safe machine which allows secure and pleasant works along orchard slopes. In this study, a lifting utility with balance-controlled platform was developed. The platform utility could maintain to level the workbench while driving along slopes. Even the machine body was driven at the tilt angle ranges of ${\pm}20^{\circ}$, the platform bench could be maintained within ${\pm}0.5^{\circ}$ of a gimbal angle. In addition, the machine lifted up to 2.0 m using an electric-hybrid driving mechanism with a low noise. A tandem hybrid power source was developed with a DC 72 V, 100 AH for the Deep-Cycle batteries, charged with 3.5 kW gasoline generator as an auxiliary power source. HST, which is one of the CVT's, was adopted as a transmission device, and a crawer track was used for the safety of the vehicle against tip-over. The maximum lifting height of platform was is 2,500 mm, and the maximum extendable width was 2,900 mm.

Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.306-317
    • /
    • 2021
  • The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.

An Analysis of the Demand Expansion Options for the Domestic Anthracite Coal (국내 무연탄의 수요개발 가능성 분석)

  • 최기련;강희정
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.102-110
    • /
    • 1992
  • The determination of production level of the domestic anthracite coal is an important issue in the national energy strategy. It is also closely related to the energy mix scenarios in the future. The objective of the paper is to discuss and analyze the options of expanding anthracite coal demand in the utility sector. The observed options are including; (1) New pulverized system of the 200 and 500 MW level, (2) Atmospheric Fluidized Bed Combustion (AFBC), and (3) Pressurized Fluidized Bed Combustion (PFBC). Special emphasis is placed on the considerations in estimating the effects on the electric system costs and government subsidies when the options are introduced in the utility sector.

  • PDF

A study on the Electrical Load Pattern Classification and Forecasting using Neural Network (신경회로망을 이용한 전력부하의 유형분류 및 예측에 관한 연구)

  • Park, June-Ho;Shin, Gil-Jae;Lee, Hwa-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.39-42
    • /
    • 1991
  • The Application of Artificial Neural Network(ANN) to forecast a load in a power system is investigated. The load forecasting is important in the electric utility industry. This technique, methodology based on the fact that parallel structure can process very fast much information is a promising approach to a load forecasting. ANN that is highly interconnected processing element in a hierachy activated by the each input. The load pattern can be divided distinctively into two patterns, that is, weekday and weekend. ANN is composed of a input layer, several hidden layers, and a output layer and the past data is used to activate input layer. The output of ANN is the load forecast for a given day. The result of this simulation can be used as a reference to a electric utility operation.

  • PDF

Improving the Quality of Customer Service of Electrical Power Supply using an Integrated Outage Management System

  • Sastry, M.K.S.
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.70-81
    • /
    • 2006
  • An Integrated Outage Management System (IOMS) is a utility owned, centralized information system. Using the Supervisory Control And Data Acquisition (SCADA) methodology, the IOMS integrates different databases and components of outage management systems to improve the quality of service of electrical power to customers. This paper describes the development of an IOMS and its related utility functionality. The design considerations, salient features, component integration, functional aspects, and implementation issues of the IOMS are discussed. Evidence shows that the IOMS implementation would result in improving the overall quality of electric power supply and effective outage management significantly.

IEC 61970 CIM based Study on the application of model for Wide Area Monitoring And Control System (IEC 61970 CIM을 기반으로 한 Wide Area Monitoring And Control system 모델 적용 연구)

  • Cho, Jun-Hee;Oh, Young-Suk;Choi, Mi-Hwa;Shin, Seung-Hee;Kim, Ji-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.178-179
    • /
    • 2011
  • The exchange of information with legacy systems is a main issue in the era of SMARTGRID. Because WAMAC(Wide Area Monitoring and Control) system has monitoring function, as well as control function, it is very necessary for WAMAC to exchange data and information with SCADA(Supervisory Control and Data Acquisition) / EMS(Energy Management System). IEC 61970 CIM(Common Information Model) is an abstract model that represents all the major objects in an electric utility enterprise typically involved in utility operations. In this paper, a proposal that adopting CIM to WAMAC model be submitted so that the integration of various legacy system and application for itself be able to be flexible.

  • PDF