• Title/Summary/Keyword: Electric utility

Search Result 338, Processing Time 0.028 seconds

On the underground imaging using borehole camera

  • Jeong Yun-Young;Nakagawa Hideaki;Shimada Hideki;Matsui Kikuo;Kim JaeDong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.52-59
    • /
    • 2003
  • It is only possible through the image analysis of borehole wall and the core recovered from borehole constructed in rock mass that the real information about geologic characteristics in rock mass is directly obtained in primary research. Monitoring apparatus with multi-functional utility has implemented and applied in-situ condition for finding the geologic condition of target area. But, this apparatus is very expensive to be applied at the risk of loss during monitoring and cause hard work for moving them to the determined position. This paper shows the underground imaging from the borehole information obtained by a borehole camera with the simple utility and low cost enough to investigate the characteristics of borehole wall. Monitoring for this has been done in open-pit mine located at the northeastern part of Fukuoka Prefecture in Japan, and finally the three dimensional imaging of geological discontinuity was discussed relative to the field condition.

  • PDF

DSM Resources Evaluation and Customer Behavior Analysis (DSM 자원평가 및 소비자 행태 분석)

  • Ahn, Nam-Seong;Park, Min-Hyuk;Rhu, Jae-Gook
    • Korean System Dynamics Review
    • /
    • v.5 no.1
    • /
    • pp.49-71
    • /
    • 2004
  • Demand-side Management can be defined as'any utility activity aimed at modifying customers' use of energy to produce desired changes in the utility's load shape'. Customers benefit by being able to control energy costs and improve quality of life and become more productive. Utilities benefit from DSM's value as a resource that enhances asset utilization and reduces both fuel costs and environmental emissions. The scope of DSM includes load management through rate schedules and conservation by improving energy effciency and using electricity consumption effectively. This paper study the DSM resource evaluation and customer behavior analysis todesign the DSM Program plan in response to customer needs. We develop basic system dynamics model to analysis the customer behavior based on a survey research. The DSM Program participants in the Hi- efficiency Inverter, Electric motor and efficient lighting applicancies operating by Conservation program 2002 become the survey objects. DSM resource evaluation evaluate firstt the distribution potentialities of each machine and then forecast the degree of diffusion. We apply the system dynamic approach to simulate the dynamic DSM market situation at the domestic beginning. This model will give the energy Planner the opportunity to create different scenarios for DSM program planning. Also it will lead to increased understanding of the dynamic DSM market

  • PDF

Impulse Response Characteristics of the Grounding Systems with respect to the Common-Connection Position in Power Utility System (수변전설비에서 접지시스템의 공결점의 위치에 따른 임펄스 응답특성)

  • Lee, B.H.;Eom, J.H.;Kim, S.W.;Shim, P.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2149-2151
    • /
    • 1999
  • This paper describes the impulse response characteristics of the grounding systems in power utility system. Several regulations regarding to electric power equipments, services and managements require that the groundings of class 1 ($E_1$) and class 2 ($E_2$) must be connected at the common point in grounding systems. In addition, the grounding for arrester ($E_{LA}$), which belongs to the grounding of class 1, should be connected at the same point. However, there is no method and position of common-connection at anywhere. In this work, when the impulse current was injected through the grounding conductor for arrester, the investigations measuring and analyzing potential rises induced at the common connection point and other grounding conductors were conducted. The experiments were carried out in the conditions of the grounding conductor of 25m long and the near or remote common connection from ground electrode. The lightning impulse current was applied so as to simulate the on-set of arrester due to lightning and/or switching surges.

  • PDF

CURRENT STATUS AND PROSPECT FOR PERIODIC SAFETY REVIEW OF AGING NUCLEAR POWER PLANTS IN KOREA

  • Jin, Tae-Eun;Roh, Heui-Young;Kim, Tae-Ryong;Park, Young-Sheop
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.545-548
    • /
    • 2009
  • Korean utility has utilized a Periodic Safety Review (PSR) that assesses the cumulative effects of plant aging, modifications, operating experience, technical developments, and site characteristics since 2000. In particular, the assessment and management of plant aging is one of the major areas in PSR. It includes identification of critical Systems, Structures, and Components (SSCs) for aging, assessment of aging effects, and implementation of aging management programs. Since the PSR system was introduced based on the atomic energy acts and related laws, PSRs of eight sets for 12 Nuclear Power Plants (NPPs) that have been operating more than 10 years have been completed. PSRs of two sets for 4 NPPs are currently being carried out. The utility has confirmed that domestic NPPs have been operated safely through these PSRs and have implemented the follow-up corrective activities to increase the nuclear safety. In this paper, the status of PSR implementation is discussed and improvement programs to conduct PSR follow-up corrective activities efficiently for NPPs are suggested based on experiences with aging assessments.

A Study on Optimal Reliability Criterion Determination for Transmission System Expansion Planning

  • Tran Trungtinh;Choi Jae-Seok;Jeon Dong-Hoon;Chu Jin-Boo;Thomas Robert;Billinton Roy
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.62-69
    • /
    • 2005
  • The optimal design of transmission system expansion planning is an important part of the overall planning task of electric power system under competitive electricity market environments. One of main keys of the successful grid expansion planning comes from optimal reliability level/criteria decision, which should be given for constraint in the optimal expansion problem. However, it's very difficult to decide logically the optimal reliability criteria of a transmission system as well as generation system expansion planning in a society. This paper approaches a methodology for deciding the optimal reliability criteria for an optimal transmission system expansion planning. A deterministic reliability criteria, BRR (Bus Reserve Rate) is used in this study. The optimal reliability criteria, BRR/sup */, is decided at minimum cost point of total cost curve which is the sum of the utility cost associated with construction cost and the customer outage cost associated with supply interruptions for load considering bus reserve rate at load buses in long term forecasting. The characteristics and effectiveness of this methodology are illustrated by the case study using IEEE-RTS.

On the Use of the Linguistic Fuzzy Approaches in the Selection of Liquid Levelmeters for Nuclear Energy Facilities (원자력설비용 수위측정기 선정시 언어 모호집합론적 접근법 사용)

  • Ghyym, Seong-Ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.119-124
    • /
    • 1999
  • A selection methodology of liquid levelmeters, especially, level sensors in non-nuclear category, to be installed in nuclear energy facilities is developed using linguistic fuzzy approaches such as fully-linguistic and semi-linguistic methods. Depending on defuzzification techniques, the linguistic fuzzy methodology leads to either linguistic (exactly, fully-linguistic) or cardinal (i.e., semi-linguistic) evaluation. For the linguistic method, for each alternative, fuzzy preference index is converted to linguistic utility value by means of a similarity measure determining the degree of similarity between fuzzy index and linguistic ratings. For the cardinal method, the index is translated to cardinal overall utility value. According to these values, alternatives of interest are linguistically or numerically evaluated and a suitable alternative can be selected. Under given selection criteria, the suitable selections out of some liquid levelmeters for nuclear facilities are dealt with using the linguistic fuzzy methodology proposed. Then, linguistic fuzzy evaluation results are compared with qualitative result available in the literature. It is found that as to a suitable option the linguistic fuzzy selection is in agreement with the qualitative selection. Additionally, the comparative study shows that the fully-linguistic method using adequate scale system facilitates linguistic interpretation regarding evaluation results.

  • PDF

Backhaul transmission scheme for UAV based on improved Nash equilibrium strategy

  • Liu, Lishan;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2666-2687
    • /
    • 2022
  • As a new alternative communication scheme in 5G, unmanned aerial vehicle (UAV) is used as a relay in the remote base station (BS) for assistant communication. In order to ameliorate the quality of the backhaul link, a UAV backhaul transmission scheme based on improved Nash equilibrium (NE) strategy is proposed. First, the capacity of air-to-ground (A2G) channel by the link preprocess is maximized. Then, the maximum utility function of each UAV is used as the basis of obtaining NE point according to the backhaul channel and the backhaul congestion. Finally, the improved NE strategy is applied in multiple iterations until maximum utility functions of all the UAVs are reached, and the UAVs which are rejected by air-to-air (A2A) link during the process would participate in the source recovery process to construct a multi-hop backhaul network. Simulation results show that average effective backhaul rate, minimum effective backhaul rate increases by 10%, 28.5% respectively in ideal A2G channel, and 11.8%, 42.3% respectively in fading channel, comparing to pure NE strategy. And the average number of iterations is decreased by 5%.

Indirect Current Control of Utility Interactive Inverter for Seamless Transfer (연속적인 운전모드의 전환을 위한 계통연계형 인버터의 간접 전류 제어기법)

  • Yu, Tae-Sik;Bae, Young-Sang;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2006
  • Distributed generation (DG) systems go to intentional islanding operation to back up private emergency loads when the main grid is out of electric power. Conventional utility interactive inverters normally operated in current control mode in DG system must change their operation mode into voltage control mode to ensure stable voltage source to the emergency loads when intentional islanding operation occurs. During the transfer between current control mode and voltage control mode, serious transient problem may occur on the output terminal voltage of the utility interactive inverter. This paper proposes reasonal inverter topology and its control algorithm for seamless transfer of DG systems in intentional islanding operation. Filter design guide line and data for a LCL filter that is appropriate for the proposed control algorithm are also presented by the authors.

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

A Study on the Power Management Algorithm of Centralized Electric Vehicle Charging System (중앙제어기반 전기자동차 충전시스템의 에너지관리 알고리즘에 관한 연구)

  • Do, Quan-Van;Lee, Seong-Joon;Lee, Jae-Duck;Bae, Jeong-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.566-571
    • /
    • 2011
  • As Plug-in Hybrid Vehicle and Electric Vehicle (PHEV/EV) take a greater share in the personal automobile market, their high penetration levels may bring potential challenges to electric utility especially at the distribution level. Thus, there is a need for the flexible charging management strategy to compromise the benefits of both PHEV/EV owners and power grid side. There are many different management methods that depend on the objective function and the constraints caused by the system. In this paper, the schema and dispatching schedule of centralized PHEV/EV charging spot network are analyzed. Also, we proposed and compared three power allocation strategies for centralized charging spot. The first strategy aims to maximize state of vehicles at plug-out time, the rest methods are equalized allocation and prioritized allocation based on vehicles SoC. The simulation results show that each run of the optimized algorithms can produce the satisfactory solutions to response properly the requirement from PHEV/EV customers.