• Title/Summary/Keyword: Electric spring

Search Result 157, Processing Time 0.026 seconds

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Adaptive Control of the Active Pantograph for a High-speed Train

  • Park, In-Ki;Park, Tong-Jin;Wang, Yeung-Yong;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.3-174
    • /
    • 2001
  • Electric power collection is one of the most important factors for the high-speed trains' operation. For the stable current collection, the contact wire of a catenary and the panhead of a pantograph should maintain a constant contact each other. In this paper, the catenary was modeled as a spring with time-varying stiffness from the point of a pantograph moving along the catenary, and the pantograph was modeled as a 3-D.O.F. mass-spring-damper system. Using the adaptive control method, the desired control performance could be obtained with the modeling errors and the time varying parameters. Also the state estimator was used considering the difficulty of applying the sensors obtaining feedback signals. Simulations were accomplished in various ...

  • PDF

Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics (차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발)

  • Jeong, Jongryeol;Shin, Changwoo;Lim, Wonsik;Cha, Suk Won;Jang, Myeong Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.

Development of high capacity stirling cryocooler

  • Ko, Junseok;Yeom, Hankil;Kim, Hyobong;Hong, Yong-Ju;In, Sehwan;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.51-56
    • /
    • 2015
  • Cryogenic cooling system for HTS electric power devices requires a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has gamma-type configuration. Piston and displacer are supported with flexure spring. A slit-type heat exchanger is adopted for cold and warm-end, and the generated heat is rejected by cooling water. In cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. Moreover, temperatures of cooling water, housing and linear motor are recorded and electric power parameters of driving circuit are also obtained. The developed Stirling cryocooler reaches to 47.8 K within 23.4 min. with no-load. From heat load tests, it shows cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP.

Design of Self-Powered Sensor System for Condition Monitoring of Industrial Electric Facilities (산업전기 설비의 상태 감시를 위한 자가 발전 센서 시스템의 설계)

  • Lee, Ki-Chang;Kang, Dong-Sik;Jeon, Jeong-Woo;Hwang, Don-Ha;Lee, Ju-Hun;Hong, Jeong-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.264-266
    • /
    • 2005
  • Recently, on-line diagnosis methods through wired and wireless networks are widely adopted in the diagnosis of industrial Electric Facilities, such as generators, transformers and motors. Also smart sensors which includes sensors, signal conditioning circuits and micro-controller in one board are widely studied in the field of condition monitoring. This paper suggests an self-powered system suitable for condition-monitoring smart sensors, which uses parasitic vibrations of the facilities as energy source. First, vibration-driven noise patterns of the electric facilities are presented. And then, an electromagnetic generator which uses mechanical mass-spring vibration resonance are suggested and designed. Finally energy consumption of the presented smart sensor, which consists of MEMS vibration sensors, signal conditioning circuits, a low-power consumption micro-controller, and a ZIGBEE wireless tranceiver, are presented. The usefulness and limits of the presented electromagnetic generators in the field of electric facility monitoring are also suggested.

  • PDF

Testbed Design of PWM Controlled High Voltage Relay (PWM 제어용 고전압 릴레이의 테스트베드 설계)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.419-424
    • /
    • 2017
  • The purpose of this study is to develop a virtual testbed capable of predicting the functional performance of a linear electromagnetic actuator for a high voltage relay in order to reduce its development costs and time. The virtual testbed is defined by a multiphysics coupling approach in order to consider the complex interactions of multi-domains such as the solenoid model of electromagnets, the mass-spring-damper model of mechanical systems, the electric circuit model for an external control unit, and the thermal model for predicting temperature variations. The performances of the existing high voltage relay were estimated by the virtual testbed, and then the effectiveness and validation of the proposed testbed were discussed in comparison with the experimental test results. This study showed that the virtual testbed can be applied in design, optimization, and investigation of high voltage relays.

Development of Accurate Load Model for Detailed Power System Stability Analysis (전력계통 안정도 정밀해석을 위한 적정 부하모델 개발)

  • Park, S.W.;Kim, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.201-205
    • /
    • 2001
  • This paper presents the load modeling process and bus load models for KEPCO power system. At first, load devices commonly used in KEPCO power systems were selected, and tested for measuring the voltage and frequency sensitivity of active and reactive power. From this test, about 40 voltage and frequency dependent load models have been obtained. The bus load composition rate for KEPCO power system has been determined using the various recent surveys and papers in order to develop the load model for a power system bus. To verify the accuracy of developed bus load models, the field test for measuring active and reactive power according to artificial variation of the bus voltage was performed at 8 substations for spring summer, autumn, winter cases. With data of this seasonal field test, more reliable bus load models for KEPCO power systems were developed.

  • PDF

Reverse Analysis on a Direct Dive Servo Valve with Electric Feedback (전기 피드백 직동형 서보 밸브에 관한 역 분석)

  • Kim, S.D.;Ahn, H.W
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • Mechanical and electrical properties of a DDV(Direct Drive servo Valve) with electric feedback are analysed via reverse analysis technique in this work. The DDV is disassembled and mechanical parameters, such as spool mass, spring stiffness and port size are identified. The servo amplifier, which is built in the valve, is reversely analysed and the control scheme and gains for several control actions are also identified. The electrical feedback for spool displacement improves much better the valve performance, such as hysteresis and dynamic bandwidth frequency, than an ordinary mechanical feedback valve. Integrating control action with very large gain was adopted in the valve amplifier, and it seemed to give high performance.