• Title/Summary/Keyword: Electric shock accidents

Search Result 67, Processing Time 0.023 seconds

Integrated Management System to Improve Photovoltaic Operation Efficiency (태양광발전 운영효율 향상을 위한 통합관리시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • A solar power plant is a facility that produces electricity. As the risk of fire and electric shock accidents is diversified, the risk of workers, surrounding people, and facilities is increased, preventing safety accidents and promptly responding to safety accidents Is emerging. In light of the necessity of such development, it is necessary to develop a solar power generation management system that can diagnose and maintain the problems of the power generation system in real time by developing technologies for collecting and analyzing the data produced by the solar power generation system As a result, the utilization rate and the maintenance cost can be reduced. In order to do this, it is necessary to accurately predict the solar power generation amount in the present state, to diagnose the abnormality of the current power generation state and to grasp the abnormal position, and to use the model considering economical efficiency when the abnormal position is grasped, And the time and other information should be provided.

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.

A Study on the Effectiveness of Virtual and Real Experience Type Safety Education at Construction Sites (건설현장에 접목한 가상체험·실물체험 안전교육의 효과성 연구)

  • Cho Choonhwan
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Existing safety education delivered to construction workers has limitations in concentration and immersion, so delivery power and interest are low. In order to improve the unstable behavior of construction workers and prevent safety accidents through education, a paradigm shift to hands-on education is necessary. Experiential safety education aims to contribute to the prevention of safety accidents and induce safe behavior by construction workers to recognize risks faster, select safe working methods suitable for the working environment, and improve emergency response and proactive response. Experiential education facilities have a follow-up learning effect in case of danger. The experience facility, which consists of the same working environment as the actual construction site, is designed to experience falls, equipment contraction, fire, and electric shock. In order to achieve the results of safety education that has invested a lot of time, construction workers must have motivation to participate, and "experiential safety education" through playful, deviant, and aesthetic experiences reduces serious accidents.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

A Suggestion of the Direction of Construction Disaster Document Management through Text Data Classification Model based on Deep Learning (딥러닝 기반 분류 모델의 성능 분석을 통한 건설 재해사례 텍스트 데이터의 효율적 관리방향 제안)

  • Kim, Hayoung;Jang, YeEun;Kang, HyunBin;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.73-85
    • /
    • 2021
  • This study proposes an efficient management direction for Korean construction accident cases through a deep learning-based text data classification model. A deep learning model was developed, which categorizes five categories of construction accidents: fall, electric shock, flying object, collapse, and narrowness, which are representative accident types of KOSHA. After initial model tests, the classification accuracy of fall disasters was relatively high, while other types were classified as fall disasters. Through these results, it was analyzed that 1) specific accident-causing behavior, 2) similar sentence structure, and 3) complex accidents corresponding to multiple types affect the results. Two accuracy improvement experiments were then conducted: 1) reclassification, 2) elimination. As a result, the classification performance improved with 185.7% when eliminating complex accidents. Through this, the multicollinearity of complex accidents, including the contents of multiple accident types, was resolved. In conclusion, this study suggests the necessity to independently manage complex accidents while preparing a system to describe the situation of future accidents in detail.

The Implementation of Active Leakage Current Detecting Algorithm based on 16 bit Signal Processor (16비트 신호처리 프로세서 기반 유효성분 누설전류 감지 알고리즘 구현)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.605-610
    • /
    • 2016
  • The ELCB(: Earth Leakage Circuit Breaker) is the only way being used to prevent accidents from happening caused by electrical disaster. However, the existing ELCB has a limit to prevent damages to life and property due to a electric fire and a human body electric shock caused by the resistive leakage current, because of detecting the total leakage current in the block range of 15mA~30mA. It also has problems such as reduced productivity and reliability due to malfunctions by capacitive leakage currents. In this study, we have implemented the algorithm for the resistive leakage current detection technique and developed the resistive leakage current detection module based on a MSP430 processor, 16bit signal processor and this module can be operated in a desired block threshold within 0.03 seconds as specified in KS C 4613.

A Case Study of Risk Assessments and Safety Measures in a PCB Manufacturing Process (인쇄회로기판 제조 공정에서 위험성평가와 안전조치 적용 사례 연구)

  • Lee, Young Man;Lee, Inseok
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.120-128
    • /
    • 2022
  • Printed circuit boards (PCBs) are a basic component in the electronics industry and are widely used in nearly all electronic products, such as mobile phones, tablet computers, and digital cameras, as well as in electric equipment. PCB manufacturing involves the use of many chemicals and chemical processes and therefore has more risks than other manufacturing sectors. This study aims to identify the causes of possible accidents during PCB manufacturing through risk assessment, develop and implement safety measures, and evaluate the effectiveness of these measures. Note that the safety measures developed to mitigate the risks of a certain process were also implemented for other similar processes. The risk assessments conducted over seven years, from 2015 to 2021, at a PCB manufacturing company identified 361 hazardous processes. Between 2016 and 2019, 41-56 hazardous processes were identified per year; such processes decreased to fewer than 20 per year after 2020. Application of the risk assessment results to the improvement of the hazardous processes with the similar characteristics seems to be effective in decreasing the risks. Equipment-related factors such as lack of appropriate maintenance, low work standards, and defective protection devices were responsible for 59.8% of all possible accidents. Because PCB manufacturing involves many chemicals, skin contact with hazardous substances, electric shock, fire, and explosion were the most common types of possible accidents (81.7%). In total, 505 safety measures were implemented, including 157 related to purchase and improvement of equipment and devices for safety (31.1%), 147 related to the installation/modification of fire prevention facilities (29.1%), and 69 related to the use of standard electrical appliances (13.7%). Risk assessment conducted after implementing the safety measures showed that these measures significantly decreased risk; 247 processes (68.4%) had a risk level of 3, corresponding to "very low," and 114 processes (31.6%) showed a risk level of 4, corresponding to "low." In particular, risk assessment of 104 processes with risk scores of 12 and 10 other processes with risk score of 16 showed that the risk decreased to 4 after implementing the safety measures. Thus, implementing these measures in similar manufacturing sectors that involve chemical processes can mitigate risk.

The Structural Design of the Bus-bar block type of electrical switch boards (전기분전반용 블록형 부스 바의 구조 설계 연구)

  • Kwon, Young-min;Hwang, Chang-yu;Kim, Kyun-ho;Han, Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.378-385
    • /
    • 2016
  • The internal circuit of the bus-bar for an electrical switch board is a prime cause of electric shock and short circuit accidents due to the exposure of live parts. Electrical fires can also be caused by animals and foreign substances in the switchboard that connect the components with a difficult structure resulting in overheating due to an increase in contact resistance. Preventing these types of accidents is a prime concern in the manufacturing process, such as cutting and bending. In this study, the cutting bus bar of a switch board contained improved modules as a flame retardant that isolates a separate blocks to prevent such problems. This was implemented as a scalable and flexible means of reducing electrical switchboard hazards to offer a safe switch board bus-bar structure of a new connecter type

Development of a Standard Checklist for Protection to Electrical Accidents of Laboratory (연구실 전기사고방지를 위한 표준체크리스트개발)

  • Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.108-115
    • /
    • 2011
  • This paper informs the standard guideline of electrical inspection for the University laboratories and R&D institutes. A routine electrical inspection is there to prevent an electric shock and electrical fire accident in the Lab. The main issue of this paper is to check the problem of a routine electrical inspection and this paper provides a detailed guideline of a checklist for the Lab which do not have detailed instruction. It mentions the standard model of an effective routine inspection to upgrade the weak electrical environment in the Lab. One of the main purposes of this paper is to develop a routine checklist to control the electrical environment in the Lab. The evaluation checklist we develop will then be applied to every Lab. Introducing an electrical safety checklist builds a clear standard guideline for a real safety check. This will be used as a regular routine check-up for every Lab. The goal of this paper is to enforce safety from electrical accidents in the lab and it will provide safety guidelines for every Lab.

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.