• Title/Summary/Keyword: Electric safety

Search Result 1,828, Processing Time 0.03 seconds

Cases of applying battery to rolling stock (철도차량용 축전지 적용 사례)

  • Kim, Sang-Woong;Kim, Shin-Gug;Ahn, Hong-Kwan;Kim, Jea-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.413-422
    • /
    • 2011
  • A battery is an important part of the component, as a power source of the control of rolling stock at starting movement or emergency control. Now widely used batteries are Ni-Cd batteries and lead accumulators, and these are increasingly getting smaller and lighter. In addition, the electric capacity required is increasing, due to the development of electronic control technology of rolling stock. Therefore, various kinds of high-efficiency battery are considered for the new routes' rolling stock, but rolling stock's batteries should be fully tested to prove safety and also have no difficulty in terms of management, so because of the requirement, it is difficult to be in practical application. In this paper, we will survey cases of applying battery to rolling stock and then we will review whether there is any problem about safety and performance, management to discuss future trend of batteries.

  • PDF

Hydrogen explosion effects at a containment building following a severe accident (중대사고시 수소폭발이 격납건물에 미치는 영향)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

Analysis of a Fire Case Caused by Heat Generation due to Cu2O Breeding (아산화동증식 발열에 의한 화재 사례의 분석)

  • Park, Jin-Young;Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.54-63
    • /
    • 2020
  • Although fires caused by heat generation due to Cu2O breeding in wire connections are well-known among fire investigators, there are few papers on the analysis and introduction of fire cases by heat generation due to Cu2O breeding. This study analyzed fire statistics caused by heat generation in electrical connections and the phenomena and features of heat generation due to Cu2O breeding. Then, a fire which occurred in the wire connection in a university lab by heat generation due to Cu2O breeding was analyzed in more detail. This fire case could reach a conclusion that heat generation due to Cu2O breeding caused a fire in the wire connection through the fire pattern investigation of fire origin, the visual investigation of wire connection, 3D CT, power-on-test, and stereoscopic microscopy, SEM and EDS analysis.

Improved DC-DC Bidirectional Converter (개선된 DC-DC 양방향 컨버터)

  • Kim, Seong-Hwan;Hur, Jae-Jung;Jeong, Bum-Dong;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.76-82
    • /
    • 2017
  • Since the introduction of electronically controlled engines and electric propulsion ships, the need for an uninterruptible power supply for emergency power supply devices that use batteries has gained importance. The bidirectional converter in such emergency power supply devices is a crucial component. This paper proposes, a topology for an improved DC-DC bidirectional converter that is characterized by a high voltage conversion ratio and low voltage stress of switches. To confirm the performance of the converter, a computer simulation was executed with PSIM software. The conversion ratio of the proposed converter was found to be four times higher than the conventional boost converter in step-up mode and one-fourth that of the conventional buck converter in step-down mode, and the voltage stress of the switches was one-fourth of the high-side voltage. Moreover, the proposed converter was confirmed to be able to distribute equal currents between two interleaved modules without using any extra current-sharing control method because of the charge balance of its blocking capacitors.

Inspection of Heat Exchanger Tubing Defects with Ultrasonic Guided Waves (유도초음파를 이용한 열 교환기 튜브 결함 탐상)

  • Shin, Hyeon-Jae;Rose, Joseph L.;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study shows the defect detection and sizing capability of ultrasonic guided waves in the nondestructive inspection of heat exchanger and steam generator tubing. Phase and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel tube were presented for the theoretical analysis. EDM(Electric Discharge Machining) wears in tubing under a tube support plate and circumferential laser notches in tubing were detected by an axisymmetric and a non-axisymmetric transducer set up, respectively. EDM wears were detected with L(0, 2), L(0, 3) and L(0, 4) modes and among them L(0, 4) mode was found to be the most sensitive. It was also found that the flexural modes around L(0, 1) mode could be used for the detection and sizing of laser notches in the tubing.

  • PDF

Decomposition of CFC-12($CCl_2F_2$) by Discharge Plasma (방전 플라스마에 의한 CFC-12($CCl_2F_2$)의 분해)

  • 강현춘;우인성;황명환;안형환;이한섭;조정국;강안수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Decomposition efficiency, power consumption, and applied voltage of CFC(Chlorofluorocatbon) were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of CFC-12 with various electric frequencies(5~50kHz). flow rates (100~1,000mL/min), initial concentrations(100~1,000ppm), electrode materials(W, Cu, Al). electrode thickness(1, 2, 3mm) and reference gases($N_2$, $O_2$, air) were measured and the products were analyzed with FT-IR. Experimental results showed that at the frequency of 10kHz, the highest decomposition efficiency of 92.7% for CFC-12 were observed at the power consumptions of 29.6W. respectively, and that decomposition efficiency decreased with increasing frequency above 20kHz and decomposition efficiency per unit power were 3.13%/W for CFC-12. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3m. As the electrode material, decomposition efficiency was in order that tungsten(W), copper(Cu), aluminum (Al). Decomposition of CFC-12 in the reference gas of $N_2$ showed the highest efficiency among three reference gases, and then the effect of reference gas on the decomposition efficiency decreased in order of air and $O_2$. The optimum power for the maximum decomposition efficiency was 25.3W for CFC.

  • PDF

A Study on the Development of PD Simulation Pulse Generator for Evaluation of GIS Diagnosis System (GIS 진단시스템의 평가를 위한 PD 모의 펄스발생기 개발에 관한 연구)

  • Kim, Sungju;Chang, Sughun;Cho, Kook-hee
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • The expansion and stable operation of electric power facilities are important factors with development of industrial facilities in modern society. In high-voltage equipment such as GIS, the insulation characteristics may be deterioated by environment-friendly gas adaption and miniaturization. There is also the possibility of accidents due to insulation breakdown due to the deterioration of power facilities. Therefore, it is necessary to extend the diagnosis system to continuously monitor the danger signals of these power equipment and to prevent accidents. Most of the internal defects in the GIS system are conductive particles, floating electrode defects, protrusion defects, and the like. In this case, a partial discharge phenomenon is accompanied. These partial discharge signals occur irregularly and various noise signals are included in the field, so it is difficult to evaluate the reliability in the development of the diagnostic system. In this paper, a study was made on equipment capable of generating a partial discharge simulated signal that can be adjusted in size and frequency to be applied to a diagnostic device by electromagnetic wave detection method. The PD simulated pulse generator consists of a user interface module, a high-voltage charging module, a pulse forming circuit, a voltage sensor and an embedded controller. In order to simulate the partial discharge phenomenon similar to the actual GIS, a discharge cell was designed and fabricated. The application of the prototype pulse generator to the commercialized PD diagnosis module confirmed that it can be used to evaluate the performance of the diagnostic device. It can be used for the development of GIS diagnosis system and performance verification for reliability evaluation.

Evaluation on the Lightning Breakdown Voltages of Palm Oil and Coconut Oil under Non-Uniform Field at Small Gap Distances

  • Thien, Yee Von;Azis, Norhafiz;Jasni, Jasronita;Kadir, Mohd Zainal Abidin Ab;Yunus, Robiah;Ishak, Mohd Taufiq;Yaakub, Zaini
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.184-191
    • /
    • 2016
  • In recent years, there are a number of studies that have been carried out to explore the alternative for Mineral Oil (MO) as dielectric insulating fluid in transformers due to the increasing tight regulation on safety and environment. Vegetable oils have been identified as suitable candidate since it is biodegradable, non-toxic and high flash/fire points which ensure more in-service safety. Among the types of vegetable oils considered for transformers application are Palm Oil (PO) and Coconut Oil (CO). This paper presents an experimental study on the lightning breakdown voltages of PO and CO under non-uniform electric field based on needle-sphere electrodes configuration at 3 small gap distances. The type of PO used in this study is Refined Bleached and Deodorized Palm Oil (RBDPO) Olein. The main focus of this study is to examine the lightning breakdown performance of RBDPO and CO under different test conditions and assess its suitability as dielectric insulating fluid in transformers. The effect of voltage polarities (positive and negative) and testing methods (rising-voltage, up-and-down and multiple-voltage) were investigated. The data obtained from all tests were analysed by Weibull distribution in order to determine the withstand voltages for each type of oils. It was found that the breakdown voltages of RBDPO and CO are comparable with MO under positive lightning impulse. Under negative lightning impulse, the breakdown voltage of MO is slightly higher than RBDPO and CO. There is no significant effect of testing methods and voltage polarities on lightning breakdown voltages of RBDPO and CO. Based on the statistical analysis, it is found that the breakdown voltages of RBDPO and CO at 1% probability are slightly lower than MO.

A Study on the Effects of I&C Systems by EMI Generating from Corona Discharge at Transformer Area (변압기 지역 코로나 전자파 간섭에 의한 계측제어설비 영향에 관한 연구)

  • Min, Moon-Gi;Lee, Jae-Ki;Park, Jin-Yeub;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.266-271
    • /
    • 2014
  • The Electromagnetic Interference(EMI) generating from corona discharge of transformer area can interference the digital Instrument and Control(I&C) systems located nearby transformers. When the potential gradient of the electric field around the conductor is high enough to form a conductive region but not high enough to cause electrical breakdown to nearby objects, the EMI of corona discharge emits with the conducted and radiated noise and it interferences the signals of the I&C systems. Since digital I&C systems have an efficiency and competitive price, the analog I&C systems have been upgraded and displaced with the digital I&C systems but which have less EMI Immunity. There was no assessment to I&C systems by EMI generating corona discharge nearby transformers. When the safety-related I&C systems are installed in plants, the verification of equipment EMI should be done not in site-specific test but in test facilities. There are the need to do the site-specific EMI evaluation of corona discharge nearby transformers. This paper assesses the margin between plant emission limits and the highest composite plant emission of corona. When the non safety-related I&C systems are placed in transformer area, it suggests the appropriate radiated susceptibility level to EMI of corona discharge.

A Study on Ride Quality Due to Deterioration Effects for the Coupler Types of Urban EMUs (도시철도차량의 연결기 종류별 노후화가 승차감에 미치는 영향 연구)

  • Kim, Jun Woo;Cho, Byung Jin;Han, Eun Kwang;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.117-122
    • /
    • 2017
  • In this study, we studied the ride quality considering the deterioration effects of the three type couplers (single, double, and ring types) for EMUs. In order to know the impact occurred when an urban transit vehicle is under breaking, we tested the conditions of the service brake and the emergency brake. Normal coupler models without any slack showed similar dynamic performance results under all breaking conditions. But if the couplers become old, the initial pre-stresses are removed because of permanent compressive deformation in rubber. For three types of the old coupler models without the initial pre-stress, we evaluated dynamic performances of each type. As the results, the maximum and average acceleration levels of the double type and the ring type were similarly low in all conditions. But the accelerations of the single type coupler was high when compared to those of the double and ring types. In addition, Jerk value of the single type model associated with ride quality was high up to 15 times to the ring type in condition of the service braking in empty vehicle weight. Jerk value of the double type model was high up to 6 times to the ring type.