• Title/Summary/Keyword: Electric motor vehicle design

Search Result 192, Processing Time 0.032 seconds

Development of BLDC Motor Drives for Cooling fan of 42V Automotive System (42V 차량 Cooling Fan용 BLDC 모터 드라이브 개발)

  • Choi, J.H.;Lee, J.B.;Hur, J.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.208-210
    • /
    • 2005
  • A lot of conventional automotive components driven by mechanical power source are being replated with electrical ones to comply with the demands of market and customer, therefore the amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. This paper presents the design of the BLDC motor drive for Cooling Fan in 42V automotive system. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Study on Reducing Cogging Torque of Interior PM Motor for Agricultural Electric Vehicle

  • Cho, Ju-Hee;Park, Yong-Un;Kim, Dae-Kyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.134-140
    • /
    • 2013
  • This paper proposes a new design of rotor shape of Interior Permanent Magnet Synchronous Motor (IPMSM) used for agricultural electric vehicle (AEV). The distribution of the residual magnetic flux density at the air gap is modified by rotor surface shape and V-type magnet angle. As a result, cogging torque and physical characteristic have been improved, and back electromotive force (back-EMF) of the suggested model has been improved to be closest to sine wave form compared to initial model. The validity of the proposed rotor shape optimization is confirmed by the manufactured IPM rotor core and measured the performance of the cogging torque.

Frame Design Considering Exciting Frequency and Driving Characteristic of a Traction Motor for Electric Locomotive (전기기관차 견인전동기 운전점 특성과 가진주파수를 고려한 프레임 설계)

  • Kim, Chul-Su;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1759-1763
    • /
    • 2014
  • In this paper, we were performed a structural analysis and durability analysis for an integral frame with an axle according to development of the electric locomotive traction motor. In terms of the structural stability, as a result of the analysis modeling with coupling conditions of beam element and an alternative element of three-dimensional, the maximum von-Mises stress of the locking screw mounting frame were similar as 50MPa and 51MPa. Also A comparison of the natural frequency and the exciting frequency while driving of the electric locomotive No. 8200, the natural frequency is 627.05Hz~856.9Hz while the exciting frequency is not more than most 30Hz or 553Hz, 1110Hz. Therefore, it is possible to avoid the resonance.

Design of LSEV Switched Reluctance Motor Considering Drive Condition (주행조건을 고려한 LSEV용 SRM 설계)

  • Khoi, Huynh Khac Minh;Tanujaya, Marully;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.889_890
    • /
    • 2009
  • Design of high efficiency Switched Reluctance Motor (SRM) for Low Speed Electric Vehicle (LSEV) is presented in this paper. The design is made from point of view to save more used energy for operating LSEV. Focus on saving the energy gives more efficiency can be produced. Based on applying suitable driving cycles and investigates the frequently power used are foundation to design the proposed motor. Meanwhile through Finite Element Analysis (FEA) characteristic of the proposed motor such as inductance and torque profile can be obtained.

  • PDF

The Design of LLC-typed Resonant Converter with Ga-N HEMT PFC and SR method for Electric Vehicle (Ga-N HEMT PFC 및 SR기법이 적용된 전기자동차용 LLC 공진형컨버터의 설계)

  • Yoo, DongJoo;Chun, Ji-Yong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.313-319
    • /
    • 2017
  • In this paper, we present a design technique that miniaturises the DC-DC converter, a key component in the electric vehicle system, using the advanced material (Ga-N HEMT) in the LLC resonant converter and freely changes the resonant frequency. This design is also proposed to improve the efficiency and temperature characteristics by adding SR Topology in the secondary side output during the operation of power supply. In this experiment, as a consequence of the constructed circuit with the operation of high switching frequency of 200 kHz, the size of LLC and PFC was able to be minimised by 40[%]. Thus, the characteristics of operating temperature demonstrated $60-65^{\circ}C$ without a heat sink, when the temperature was measured at 250W (12V/20A). The features were all due to the advantages of the change of switching frequency, switching circuits implementation, and the maximisation of switching frequency. Based on these design results, we would like to implement more than 1 [kW].

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.

Design of Axial Flux Permanent Magnetic Motor Using Soft Magnetic Composite Core (연자성 분말코어를 적용한 축방향 영구 자속형 전동기 설계)

  • Choi, Myung-Wook;Yang, Seung-Jin;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.607-616
    • /
    • 2022
  • A new axial flux permanent magnet machine with soft magnetic composited cores is proposed for electric vehicle application in this paper. The windings and soft magnetic composited cores can be designed to form a very compact structure, and; thus, the torque density can be improved greatly. To obtain the a good flux concentrating ability, two toroidally wound internal stator machines are designed and analyzed, and the designed motor is with NdFeB magnet for high-performance electric vehicle application. The 3-D finite-element method is used to analyze the electromagnetic parameter and performance, for performance comparison, a commercial axial flux permanent magnet machine is used. The proposed motor reduced weight about 5.8%, produced torque higher than about 8Nm for existing motor.

A Study on developing the Battery Management System for Electric Vehicle (전기자동차용 배터리 관리 시스템에 관한 연구)

  • Han, A-Gun;Park, Jae-Hyeon;Choo, Yeon-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.882-883
    • /
    • 2013
  • With the development of the society, pure electric vehicles will be surely important of the future. Electric vehicle requires various technology like motor driving, battery management, operational efficiencies and so on. Battery management is indeed the most important to enhance battery's performance and life. This paper has deeply discussed and studied on the lithium-polymer battery management system of pure electric vehicle. First of all we have analyzed the characteristic of the lithium-polymer batteries and the factors influenced on the state of charge. Then a logical SOC measuring method has been raised, which is the combination of open circuit voltage and Ah integration. The next we will introduce the design of battery management system, the battery management system performs many functions, such as inspecting the whole process, when it's running cell equalization protecting and diagnosing the battery, estimating the state of charge. The module design style including microcontroller, data aquisition module, charging control module and serial communication module. To arrive at conclusions, the battery management system which this paper has introduced is reliable and economical.

  • PDF