• Title/Summary/Keyword: Electric field imaging

Search Result 48, Processing Time 0.028 seconds

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.103-112
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system ($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

Incoherent imaging method for high-contrast cylindrical cavity by using frequency-averaged electric field intensity pttern (주파수평균된 전계전력패턴을 사용한 high-contrast 원기둥 공동의 incoherent 영상법)

  • 강진섭;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.1-12
    • /
    • 1998
  • In this paper, an incoherent imaging of a high-contrast cylindrical cavity illuminated by the time-harmonic cylindrical wave is obtained ia the back-projections of he incoherent intensity patterns, which si acquired by averaging out the multi-frequency intensities of the total electric field scattered from this object in the cross-borehole measurement configuration. Multi-freuqncy effect is shown numerically and is intepreted analytically by the mutual coherence function defined in the is frequency domain. This imaging method is validated by imaging high-contrast cylindrical cavidities and the conditions to get better image are investigated.

  • PDF

Dynamic Analysis of the PDLC-based Electro-Optic Modulator for Fault Identification of TFT-LCD (박막 트랜지스터 기판 검사를 위한 PDLC 응용 전기-광학 변환기의 동특성 분석)

  • 정광석;정대화;방규용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2003
  • To detect electrical faults of a TFT (Thin Film Transistor) panel for the LCD (Liquid Crystal Display), techniques of converting electric field to an image are used One of them is the PDLC (polymer-dispersed liquid crystal) modulator which changes light transmittance under electric field. The advantage of PDLC modulator in the electric field detection is that it can be used without physically contacting the TFT panel surface. Specific pattern signals are applied to the data and gate electrodes of the panel to charge the pixel electrodes and the image sensor detects the change of transmittance of PDLC positioned in proximity distance above the pixel electrodes. The image represents the status of electric field reflected on the PDLC so that the characteristic of the PDLC itself plays an important role to accurately quantify the defects of TFT panel. In this paper, the image of the PDLC modulator caused by the change of electric field of the pixel electrodes on the TFT panel is acquired and how the characteristics of PDLC reflect the change of electric field to the image is analyzed. When the holding time of PDLC is short, better contrast of electric field image can be obtained by changing the instance of applying the driving voltage to the PDLC.

Imaging of Magnetic Nanoparticles Added in Transformer Oil According to the Electric and Magnetic Fields

  • Lee, Jong-Cheol;Lee, Sang-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.219-220
    • /
    • 2013
  • The phenomenology of liquid breakdown has been an area of interest for many years but is still not fully understood. Moreover, it was known that the behavior of magnetic nanoparticles in transformer oil could affect the dielectric breakdown voltage positively or negatively. In this study, we have imaged the magnetic nanoparticles in a transformer oil in-situ using an optical microscopic set-up and a microchannel according to the electric and magnetic fields applied. And we have calculated numerically dielectrophoresis and magnetophoresis forces, which must be the driving mechanisms to move magnetic nanoparticles in the fluid. It was found that when the electric field is applied the magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field.

  • PDF

DEVELOPMENT OF WIDE-FIELD IMAGING CAMERA FOR ZODIACAL LIGHT OBSERVATION

  • KWON S. M.;HONG S. S.;SHIN K. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.179-184
    • /
    • 2004
  • We have developed a wide-field imaging camera system, called WICZO, to monitor light of the night sky over extended period. Such monitoring is necessary for studying the morphology of interplanetary dust cloud and also the time and spatial variations of airglow emission. The system consists of an electric cooler a CCD camera with $60\%$ quantum efficiency at 500nm, and a fish-eye lens with $180^{\circ}$ field of view. Wide field imaging is highly desired in light of the night sky observations in general, because the zodiacal light and the airglow emission extend over the entire sky. This paper illustrates the design of WICZO, reports the result of its laboratory performance test, and presents the first night sky image, which was taken, under collaboration with Byulmaro Observatory, on top of Mt. Bongrae at Yongweol in January, 2004.

NEAR-INFRARED WIDE-FIELD IMAGING CAMERA WITH PtSi 1040 $\times$ 1040 CSD

  • ITOH NOBUNARI;YANAGISAWA KENSHI;ICHIKAWA TAKASHI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.379-380
    • /
    • 1996
  • We have constructed a near-infrared imaging camera which is attached to the prime focus of 105cm Schmidt telescope at Kiso Observatory. The camera is equipped with a 1040$\times$1040 PtSi CSD array developed by Mitsubishi Electric Co. The combination of Kiso Schmidt and the array gives a wide field of view of 18.4'$\times$18.4' with a reasonable spatial resolution of 1.06' /pixel. The system performances of the camera have been evaluated through laboratory and observational tests. Low noise, good cosmetics(no defect pixels), and good stability of the camera system show an excellent performance for astronomical use.

  • PDF

Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발)

  • Choi, Woo-Yong;Kim, Jong-Bum;Oh, Sung-Kwun;Kim, Young-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

Incoherent Tomography for Conducting Cylinder by Using Single-Frequency Time-Harmonic Source (단일 주파수 시간조화 신호원을 사용한 도체기둥의 incoherent 단면영상법)

  • 강진섭;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.1-7
    • /
    • 1998
  • In this paper, an incoherent imaging of a conducting cylinder illuminated by the single-frequency time-harmonic plane wave is obtained via the back-projections of the intensity patterns of the forward total electric field scattered from this object in the circular rotational measurement configuration. The pheonmenon that interference fringes generated in the itesity patterns is removed in the back-projection process is interpreted numerically. This imaging method is validated by imagining conducting circular cylinders and the conditions to ge beter image are investigated.

  • PDF

Cross-Borehole Incoherent Tomography for High-Contrast Cylindrical Cavity in Lossy Medium by Using Single-Frequency Time-Harmonic Signal (단일 주파수 시간조화 신호를 사용한 손실 매질내에 있는 high-contrast 원기둥 공동의 cross-borehole incoherent 단면영상법)

  • 강진섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.1-9
    • /
    • 1998
  • In this paper, an incoherent imaging of a high-contrast cylindrical cavity in a lossy medium illuminated by the time-harmonic cylindrical wave is obtained via the backprojections of the intensity patterns of the forward total electric field in the cross-borehole measurement configuration. The phenomenon that the interference fringes in the intensity pattern, which are caused by the superposition of the incident field and the scattered field with different optical paths, are removed in the backprojection process is interpreted numerically. This imaging method is validated by imaging an air circular cylinder in a lossy medium of $\varepsilon$$_{r}$=9 and $\sigma$ = 0.0005, 0.002 S/m, and the conditions for obtaining better images are investigated.d.

  • PDF