• 제목/요약/키워드: Electric conductivity balance

검색결과 17건 처리시간 0.025초

서울 地域 降水中 이온成分 分析資料의 解析 (Interpretation of Analytical Data of Ion Components in Precipitation, Seoul)

  • 강공언;이주희;김희강
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.323-332
    • /
    • 1996
  • Precipitation samples were collected by the wet-only sampling method at Seoul from September 1993 to June 1995. Sample were analysed for the anions $(NO_3^-, NO_2^-, SO_4^{2-}, Cl^-, and F^-)$ and cations $(Na^+, K^+, Ca^{2+}, Mg^{2+}, and NH_4^+)$ in addition to pH and electric conductivity. In order to establish the chemical analysis data of high quality, the assurance checks for analytical data of precipitation were performed by considering the ion balance and by comparing the measured conductivity with the calculated conductivity. As we applied the various assurance checking methods by the ion balance used until recently to a data set measured in this study, the f value expressed as $\Sigma C/\Sigma A$ was found to be not appropriate for the data screening. Also, the scattering plot between cations and anions in each sample was found to show the general tendency of ion balance but was proved to not quantitate the standard of data screening at a data set of samples of various concentration levels. The h value defined as (A-C)/C for C $\geq$ A and (A-C)/A for C < A was used to check the ion balance. However, the standard of data screening by h value must very in response to total ion concentration of samples. In this study, the quality assurance of chemical analysis data was checked by considering both the ion balance of evaluating by h value and the conductivity balance. Further the quality control was achieved by these quality assurance methods. As the result, 67 samples among total 77 were obtained as valid. As the central tendency value for a statistical summary in the analytical parametr of samples, the volume-weighted mean value was found to represent more the general chemistry of precipitation rather than the arithmetic mean. The volume-weighted mean pH was 5.0 and 25% of samples was less than this mean. The concentrations of sufate and nitrate in precipitation were 90.4 ueq/L and 32.4 ueq/L which made up 59% and 21% of all anions. The raion of $SO_4^{2-}/(NO_3^- + NO_2^-)$ in precipitation was 2.7, which indicates that the contributions of $H_2SO_4$ and $HNO_3$ to the acidity of precipitation are 70% and 30%, respectively.

  • PDF

Water Balance Evaluation of Final Closure Cover for Near- surface Radioactive Wastes Disposal Facility

  • Keunmoo Chang;Park, Joo-Wan;Yoon, Jeong-Hyoun;Park, Heui-Joo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.274-282
    • /
    • 2000
  • The simulation of water balance was conducted for suggested four alternative multi-layer cover design of near-surface radioactive waste disposal facility under domestic climate condition. The analysis was also conducted for the most favorable one out of four alternative cover design under conservative scenarios. Until 100 years after closure of disposal vault, the infiltration flux for the most favorable cover design was negligible even under doubling of the ambient precipitation condition. When the degradation of asphalt and geomembrane after 100 years of closure was considered, the infiltration flux significantly increased almost to the design criteria of cover system in I' Aube disposal facility. And it was found that the hydraulic conductivity of bentonite/sand as a bottom barrier should be no greater than 1$\times$10$^{-7}$ cm/sec recommended by U.S. EPA.

  • PDF

CCM용융에 대한 유리용융 조건 연구 (The Study on the Power Consumption for Glass Melting by Cold Crucible Melter)

  • 진현주;이규호;장영재;배소영;김태호;정영준;김영석;이강택;류봉기
    • 대한금속재료학회지
    • /
    • 제46권2호
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

한반도 배경지역 (안면, 울진, 고산) 상수의 산성도와 화학특성 (Acidity and Chemical Composition of Precipitation at Background Area of the Korean Peninsula (Anmyeon, Uljin, Gosan))

  • 김상백;최병철;오숙영;김산;강공언
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.15-24
    • /
    • 2006
  • Precipitation samples were collected at Anmyeon (1997 - 2004), Uljin, and Gosan (1998 ~ 2004), the background area of the Korean Peninsula. These samples were analyzed for the concentration of 9 major ionic components ($F^{-}$,$Cl^{-}$, $NO_{3}^{-}$, $SO_{4}^{2-}$, $Na^{+}$, $NH_{4}^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$) with including a pH and an electric conductivity. Data quality for these samples was verified by ion balance and conductivity balance which are based on GAW manual for precipitation chemistry and the number of valid data at Anmyeon, Uljin, and Gosan is 249, 173, and 188, respectively. During the study period, the precipitation-weighted average pH at Anmyeon, Uljin, and Gosan was found to be 4.81, 4.87 and 4.89, respectively and each annual average pH was showed below pH 5.6 for every site. From the frequency survey on the precipitation acidity, the occurrence rate of acid rain below pH 5.6 is greater than $80\%$ for every site. Particularly, the highest occurrence rate for strong acid rain below pH 4.5 was found at Anmyeon, $32.1\%$, compared with other sites ($10.4\%$ at Uljin, $15.4\%$ at Gosan). That's because acidifying species (nss-$SO_{4}^{2-}$, $NO_{3}^{-}$) are remarkably high concentration at Anmyeon.

시추공 수리전도도 상수를 결정하기 위한 전기전도도검층 기법을 이용한 예비모형실험 (A Preliminary Conductivity Model Experiment for Determining Hydraulic Constants in Physical Model Borehole)

  • 김영화;임헌태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권1호
    • /
    • pp.48-56
    • /
    • 2003
  • 간단한 모형시추공을 이용한 전기전도도 측정실험을 실시하고 이로부터 시추공에서의 수리상수 결정에 관련된 제반기초 환경을 검증하고 실험에 의한 모델방정식을 유도하였다. 실험은 상대적으로 높은 염도를 공내수로 하고 증류수를 지하수를 사용하여, 지하수의 유입과 유출되는 유량을 일정하게 유지한 상태에서 전기전도도를 측정하는 것으로 이루어졌다. 관찰의 주 대상은 지하수의 유량, 공내수와 지하수 사이의 염도차 및 밀도차에 따른 공내에서의 전기전도도 변화 양상에 있었다. 실험결과, 공내에서의 시간에 따른 전기전도도 변화가 매우 일정한 양상으로 나타남을 보였으며, 유량과 전기전도도 변화율 사이에 양호한 상관관계가 얻어졌다. 이 결과는 향후 추가될 일반적인 수리상수와 검층수리 상수들의 비교연구로 모델방정식에 대한 검증이 이루어진다면, 희석모델에 근거한 전기전도도검층 기법이 수리 상수 결정을 위한 효과적인 방법이 될 수 있음을 보여 주었다.

태안지역 빗물의 화학적 특성 (Chemical Composition of Rainwater in Taean Area)

  • 이종식;정이근;이규승
    • 한국환경농학회지
    • /
    • 제18권3호
    • /
    • pp.204-208
    • /
    • 1999
  • 태안지역 빗물의 화학적 특성을 알아보기 위하여 '98년 영농기(5월${\sim}$10월) 동안 태안지역에 내린 빗물의 화학적 성분조성과 분석결과의 신뢰성을 조사한 결과는 다음과 같다.각 분석시료에 대한 이온균형과 전기전도도 수지를 조사한 결과, 고농도 시료를 제외하고는 분석의 신뢰성이 인정되었다. 빗물의 pH별 분포는 pH $4.5{\sim}5.0$$5.0{\sim}5.6$ 범위에서 각각 43%와 38%이었으며, 강우량별 빗물의 이온함량과 pH 변화는 초기강우(1mm 이하)가 그 이후의 강우에 비해 높았다. 빗물의 조성은 $SO_4\;^{2-}$$NO_3\;^-$가 음이온의 80% 이상 그리고 양이온은 $NH_4\;^+$$Ca^{2+}$가 60% 이상을 차지하고 있었다. 월별 빗물의 pH는 강우량이 많았던 8월에 4.3으로 가장 낮았고 조사지역 강우중 비해염 sulfate는 총 sulfate 함량의 약 97%이었다. 빗물의 $nss-SO_4\;^{2-}/NO_3\;^-$비는 평균 2.4로 비해염 $SO_4^{2-}$의 강우 산성도에 대한 기여율이 $NO_3\;^-$보다 2.4배 높았다.

  • PDF

전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도 (Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture)

  • 김덕준;최상순;김태호
    • Elastomers and Composites
    • /
    • 제33권2호
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

Nanostructured Polymer Electrolytes for Li-Batteries and Fuel Cells

  • 박문정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.71.2-71.2
    • /
    • 2012
  • There are rising demands for developing more efficient energy materials to stem the depletion of fossil fuels, which have prompted significant research efforts on proton exchange fuel cells (PEFCs) and lithium ion batteries (LIBs). To date, both PEFCs and LIBs are being widely developed to power small electronics, however, their utilization to medium-large sized electric power resources such as vehicle and stationary energy storage systems still appears distant. These technologies increasingly rely upon polymer electrolyte membranes (PEMs) that transport ions from the anode to the cathode to balance the flow of electrons in an external circuit, and therefore play a central role in determining the efficiency of the devices; as ion transport is a kinetic bottleneck compared to electrical conductivity, enormous efforts have been devoted to improving the transport properties of PEMs. In present study, we carried out an in-depth analysis of the morphology effects on transport properties of PEMs. How parameters such as self-assembled nanostructures, domain sizes, and domain orientations affect conductivities of PEMs will be presented.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • 이승준;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가 (Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology)

  • 이건호;전기수;유일재;안강호
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.