• Title/Summary/Keyword: Electric conducting adhesive

Search Result 6, Processing Time 0.026 seconds

PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor

  • Park, Jong Hyeok;Lee, Sang Young;Kim, Jong Hun;Ahn, Sunho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.143-148
    • /
    • 2012
  • The unique effects of highly conductive conducting polymer/SWNT (single walled carbon nanotube) composite nanoparticles in electric double layer capacitors are studied for the enhancement of the adhesive properties, specific capacitance and power characteristics of the electrode. Because the conducting polymer/SWNT composite material, which is believed to act as a polymer binder, an active material for charge storage and a conducting agent, is well distributed on the activated carbon, greatly enhanced adhesion properties, cell capacitance and power characteristics were obtained.

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소의 전기화학적 거동 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.481-481
    • /
    • 2007
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black: PTFE = 95-x : x : 5 wt.%. It was found that the best electric and mechanical properties were obtained in sheet electrode roll-pressed for about 15 times and in sheet electrode, in which composition is MSP 20 : carbon black: PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability in the current range of $0.5mA/cm^2$ $100mA/cm^2$ and the lowest equivalent series resistance.

  • PDF

Preparation and Electrochemical Performance of Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.833-839
    • /
    • 2005
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black : $PTFE\;=\;95-X\;:\;X\;:\;5wt.\%$. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 : carton black $PTFE\;=\;80\;:\;15\;:\;5wt.\%$. These behaviors could be explained by the network structure of PTFE fibrils and conducting Paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with $15wt.\%$ of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black $CMC\;=\;70\;:\;30wt.\%$, has exhibited the best rate capability between $0.5\;mA/cm^2\~100\;mA/cm^2$ current density and the lowest ESR.

Study of Parameters on the Electrochemical Properties of Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극의 전기화학적 특성에 미치는 변수 연구)

  • Kim, Ick-Jun;Yang, Sun-Hye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.355-356
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black: PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 carbon black : PTFE = 80 : 15 : 5 wt%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between 0.5 $mA/cm^2$ ~ 100 $mA/cm^2$ current density and the lowest ESR.

  • PDF

Electrochemical Performance of Carbon-PTFE Electrode with High Capacitance and Density for EDLC (EDLC용 고용량, 고밀도 Carbon-PTFE 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Je;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.541-542
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black : PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP 20 : carbon black : PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between $0.5mA/cm^2{\sim}100mA/cm^2$ current density and the lowest ESR.

  • PDF

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.