• Title/Summary/Keyword: Electric cell

Search Result 1,362, Processing Time 0.029 seconds

Carbon nanotube effects on physical properties of liquid crystal and electro-optic characteristics of in-plane switching liquid crystal cell (카본나노튜브가 액정의 물성과 in-plane switching 셀의 전기광학 특성에 미치는 영향)

  • Jeon, Sang-Youn;Jeong, Seok-Jin;Jeong, Seok-Ho;Shin, Seung-Hwan;An, Kay-Hyok;Kang, Hoon;Kim, Kyoung-Jin;Lee, Seung-Hee;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.47-48
    • /
    • 2006
  • Carbon nanotubes (CNTs)-doped homogeneously aligned nematic liquid crystal (LC) cells driven by in-plane field were fabricated and their electro-optic characteristics were investigated. Effective cell retardation values in an absence of an electric field between doped and undoped LC were the same each other. In the presence of an electric field, however, measured effective cell retardation value was smaller in the CNT-doped cell than in the undoped cell so that the transmittance was slightly smaller in the CNT-doped cell than in the undoped cell. In addition, the CNT-doped cell exhibited slight increase in driving voltage and decrease in response time compared to the undoped cell. The CNT effects on electro-optic characteristics of the cell were discussed.

  • PDF

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

The generation and characteristics of the dominant field in CTL cell (CTL cell에서의 우세장 발생과 특성)

  • Park, Unghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1055-1063
    • /
    • 2013
  • CTL cell that is one of the standard electromagnetic generation equipment can measure the characteristic of the electromagnetic susceptibility and the electromagnetic interference. In case of being input the same magnitude signal with the phase difference of 0o or the phase difference of 180o at two input ports of CTL cell to be the fundamental resonant frequency(TE011) of 2.20GHz, the characteristics of the electric field and the magnetic field at the uniform area were measured. And, it measured the electric field characteristic due to the variation of the input power, the test position and the input frequency under the dominant E-field and the dominant H-field of CTL cell. Using these mesuremed data, it examined the operation characteristic and the available frequency band of CTL cell.

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

EO Characteristics in the Multidomain Vertical-Alignment (MVA) Cell on a Homeotropic Photopolymer (수직 광폴리머를 이용한 MVA 셀의 전기 광학 특성)

  • Lee, Kyung-Jun;Hwang, Jeoung-Yeon;Kim, Jae-Hyung;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.953-956
    • /
    • 2002
  • The electro-optical (EO) performances of a multidomain vertical-alignment (MVA) cell on a homeotropic photopolymer have been investigated. In the absence of an electric field, the MVA cell achieved black state as LC alignment is homeotropic. An electric field created by interdigitated electrodes and rib made after photolithograph using the photopolymer on both substrates causes a director deformation of a multidomain type. Good voltage-transmittance curves for a MVA cell on the homeotropic photopolymer were observed. Also, the stable response time of MVA cell on the homeotropic photopolymer can be achieved.

  • PDF

Fuzzy Logic-Based Energy Management Strategy for FCHEVs (연료전지 하이브리드 자동차에 대한 퍼지논리 기반 에너지 운용전략)

  • Ahn Hyun-Sik;Lee Nam-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.713-715
    • /
    • 2005
  • The work in this paper presents development of fuzzy logic-based energy management strategy for a fuel cell hybrid electric vehicle. In order for the fuel cell system to overcome the inherent limitation such as slow response time and low fuel economy especially at the low power region, the battery system has come to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy between power sources is essentially required. For the optimal power distribution between the fuel cell system and the battery system, a fuzzy logic-based energy management strategy is proposed. In order to show the validity and the robustness of suggested strategy, some simulations are performed for the standard drive cycles.

Recent Advances in Cold-Start and Drive Capability of Fuel Cell Electric Vehicle

  • Sung, Woo-Suk;Suh, Kyung-Won;Kweon, Soon-Gil;Park, Jong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.47-50
    • /
    • 2008
  • The sub-zero cold is a major environmental consideration for the operational readiness of FCEVs because fuel cells produce water and utilize wet air with varying water content to generate electricity. Typical fuel cells thus have a fatal flaw in freezing conditions at startup. This drawback becomes more serious with the outsourced fuel cell that is entirely water-based for its internal humidification. In this background, the HMC's self-designed fuel cell was developed as an alternative and was employed in the Tucson-based FCEV in 2006 demonstrating its good cold-startup characteristics. The cold-startup capacity of the vehicle was validated through tests in the cold chamber and on the road, resulting in 50% stack power achieved in 250 seconds at $-15^{\circ}C$.

  • PDF

Electrical Characteristics for the Cu/Zn Chemical Cell using NaCl Electrolytes (NaCl 전해질을 사용한 Cu/Zn 화학전지의 전기적 특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1259-1264
    • /
    • 2010
  • This paper was researched about effectiveness of the electrochemical cell which is composed of the sea water and the Cu/Zn electrode. The electric potential difference between copper and zinc finally reached 0.51 volts. Short current decreased with time. It might depend on the electromotive force decreasing. Confirmed the load resistance and electrode affect in electromotive force and electric current. The resistance which shows a maximum output power was 20[$\Omega$], and the maximum output power from this resistance was evaluated as 0.736mW. In order to calculate the energy which creates from electrochemical cell, charging voltage of the capacitor with various capacitance was investigated. It was found that energy harvesting possibility of the cell which is made of a sea water electrolyte and the copper/the zinc.

Wide-Viewing Angle Characteristics of MVA Cell using Photolithograph with Homeotropic Photopolymer Surface (수직 광폴리머 표면에 사진식각을 이용한 다중도메인 수직배향셀의 광시야각 특성)

  • 황정연;이경준;이재호;김태호;이상극;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.219-223
    • /
    • 2003
  • The electro-optical (EO) performances of a multidomain verticial-alignment (MYA) cell on a homeotropic photopolymer have been investigated. In the absence of an electric field, the WVA cell achieved black state as LC alignment is homeotropic An electric field created by interdigitated electrodes and rib made after photolithograph using the photopolymer on both substrates causes a director deformation of a multidomain type. Good voltage transmittance curves for a MVA cell on the homeotropic photopolymer were observed. Also, the stable response time of MYA cell on the homeotropic photopolymer can be achieved.

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.369-376
    • /
    • 2022
  • In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.