• Title/Summary/Keyword: Electric arc furnaces

Search Result 21, Processing Time 0.019 seconds

An Electric Arc Furnaces Load Model for Transient Analysis (과도현상 해석을 위한 EAFs 부하 무델의 개발)

  • Jang, Gilsoo;Venkata, S.S.;Kwon, Sea-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.197-202
    • /
    • 1999
  • Electric arc furnaces (EAFs) use bulk electrical energy to create heat in metal refining industries. The electric arc process is a main cause of the degradation of the electric power quality such as voltage flicker due to the interaction of the high demand currents of the load with the supply system impedance. The stochastic models have described the aperiodic physical phenomena of EAFs. An alternative approach is to include deterministic chaos in the characterization of the arc currents. In this parer, a chaotic approach to such modeling is described and justified. At the same time, a DLL(Dynamic Link Library) module, which is a FORTRAN interface with TACS (Transient Analysis of Control Systems), is developed to implement the chaotic load model in the Electromagnetic Transients Program (EMTP). The details of the module and the results of tests performed on the module to verify the model and to illustrate its capabilities are presented in this paper.

  • PDF

Electric Arc furnaces: Chaotic Load Models and Transient Analysis

  • Jang, Gil-Soo;Venkata, S.S.;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.923-925
    • /
    • 1998
  • Electric arc furnaces (EAFs) are a main cause of voltage flicker due to the interaction of the high demand currents of the load with the supply system impedance. The stochastic models have described the physical phenomena of EAFs. An alternative approach is to include deterministic chaos in the characterization of the arc currents. In this paper, a chaotic approach to such modeling is described and justified. At the same time, a DLL (Dynamic Link Library) module, which is a FORTRAN interface with TACS (Transient Analysis of Control Systems), is developed to implement the chaotic load model in the Electromagnetic Transients Program (EMTP). The details of the module and the results of tests performed on the module to verify the model and to illustrate its capabilities are presented in this paper.

  • PDF

Development of a Control Algorithm for a Static VAR Compensator Used in Industrial Networks

  • Spasojevic, Ljubisa;Papic, Igor;Blazic, Bostjan
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.754-763
    • /
    • 2014
  • In this paper a method for the development of a static VAR compensator (SVC) control algorithm is presented. The proposed algorithm has been designed with the objective of eliminating the negative impact of electric arc furnaces on the power system. First, a mathematical model of the proposed SVC controller in the d-q synchronous rotating coordinate system is developed. An analysis under dynamic and steady state conditions is also carried out. The efficiency of the presented controller is demonstrated by means of computer simulations of an actual steel-factory network model. The major advantages of the proposed controller are better flicker compensation, increased ability to regulate voltage and the need for only one-point network measurements.

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

Development of a Mixed Chaotic Electric Arc Furnace Model (전력 품질 해석을 위한 개선된 전기아크로 모델 개발)

  • Jang, Gil-Soo;Wang, Weiguo;Lee, Byongjun;Kwon, Sae-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.90-95
    • /
    • 2001
  • Electric arc furnaces (EAFs) has a process to cause the degradation of the electric power quality such as voltage flicker. In order to adequately understand and analyze the effects on the power system from these loads, obtaining an accurate representation of the characteristics of the loads is crucial. In this paper, a mixed chaotic EAF model to represent the low frequency and high frequency variations of the arc current respectively has been proposed. The Lorenz system may contribute to the low frequency components of arc current and the logistic equation may contribute to the high frequency components, and the proposed mixed model will be a combination of both Lorenz and logistic model. The concept of chaotic parameters, such as chaotic resistance, inductance of admittance has been also proposed for the characterization of arc furnace operation and the highly nonlinear physical processes. The power quality indices are calculated from the simulated waveforms and compared with the actual power quality indices statistics in order to illustrate the model's capabilities.

  • PDF

A Study on the Harmonics Effect of SVC in Electric Arc Furnace Loads

  • Kim, Kyung-Chul;Jin, Seong-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.54-60
    • /
    • 2006
  • Large steel industries have time-varying nonlinear loads such as electric arc furnaces. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. The main objective of the static var compensator is to maintain the rms voltage at the point of common coupling within the limit. In this research, harmonic mitigation studies were conducted with and without the SVC, and time-varying harmonics were evaluated according to the international harmonic standards (IEC 61000-3-6 and IEEE Std. 519) using a cumulative probabilistic approach.

A Study on the Harmonics Measurement, Assessment and Resonant Filter Application of the Electric Arc Furnace Loads (전기로 부하의 고조파 측정, 평가 및 동조필터 적용에 관한 연구)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Lee, Joo-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.35-42
    • /
    • 2006
  • Large steel industries have nonlinear loads including electric arc furnaces. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. This paper provides an in depth analysis on harmonics field measurement of the electric arc furnace loads, adding a single-tuned filter at the customer bus for reducing harmonic distortion and harmonics assessment by the international harmonic standards IEC 61000-3-6 and IEEE Std. 519. The EDSA program was used as a simulation tool for the case study.

Calculation of DSM's Latent capacity for arc-furnace Considered with the Same Time Load Factor (동시부하율을 고려한 전기로의 수요관리 잠재량 산출)

  • Son Hak Sig;Kim In Su;Im Sang Kug;Kim Hyeung Jung;Hur Dong Ryol;Kim Jae Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.82-84
    • /
    • 2004
  • This paper has calculated DSM's latent capacity through a survey investigating electric arc furnaces in over 2,000 toe companies and related organizations. The latent capacity of DSM calculated with the same time load factor is considered in this paper. The time load factor depends on the probability of each electric arc furnace of the value to work and the consideration of experts and technician's experience. Also, this paper verifies the reliability and application of unposed capacity which compared the old latent capacity of Load Management with KEMCO and KEPCO's Direct Load Control gathering capacity.

  • PDF

Assessment and Management Method of Flicker Emission Level Based on IEC 61000-3-7 for Domestic Extra-high Voltage Customers (국내 특고압 고객에 대한 IEC 61000-3-7 기반의 플리커 방출한계 평가 및 관리 방안 연구)

  • Han, Su-Kyoung;Shin, Hoon-Chul;Park, Sang-Ho;Kim, Kern-Joong;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • IEC 61000-3-7 provides guidance for limiting flicker and enabling the connection of fluctuating load installations, that is, producing flicker in MV, HV and EHV power systems. In Korea, the flicker have been restricted by Japanese standard of ${\Delta}V_{10}$ method. ${\Delta}V_{10}$ was developed only for arc furnaces in 1960's. And now it is revealed that it is not suitable for application to other fluctuating load installations through many researches. $P_{st}$ which is a flicker index used in IEC 61000-3-7, indicates visual inconvenience due to voltage fluctuation across large range of frequency and can be applied to fluctuating load installations as well as arc furnaces. In this paper, we introduce how to calculate and assess flicker emission level for the individual fluctuating load installations connected in EHV system and how to manage the emission levels in the power system according to IEC 61000-3-7.

A Study on the Harmonic and Flicker Effects of SVC in Electric Arc Furnace Loads (전기로 부하에서 SVC의 고조파 및 플리커 효과에 관한 연구)

  • Kim, Kyung-Chul;Choi, Hyoung-Bumb;Oh, Jung-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.150-158
    • /
    • 2007
  • Large steel industries have time-varying nonlinear loads including electric arc furnaces. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. Flicker can be defined as the effect produced on the human visual perception by a changing emission of light lamps subjected to magnitude fluctuations of their supply voltage. The main objective of the static var compensator(SVC) is to maintain the rms voltage at the point of common coupling within the limit. In this paper, harmonic and flicker mitigation studies with and without the SVC are investigated and are evaluated by the IEC 61000-3-6 and IEC 61000-3-7.