• Title/Summary/Keyword: Electric and Magnetic Field

Search Result 767, Processing Time 0.031 seconds

A Study on Characteristics and Safety Criteria for Human Body in ELF Electric and Magnetic Fields (ELF 전자계 특성 및 인체 안전기준에 관한 연구)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.34-43
    • /
    • 1993
  • This paper presents a study on the characteristics and safety criteria for human body in ELF (Extremely Low Frequency : 50-60Hz) electric and magnetic fields. Many researches for ELF electric and magnetic fields, which are developed in the past, are studied and analyzed In this paper. In order to estabilish the safety criteria for human body in the field, the field intensity, induced current and voltage are calculated by the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation. The method is applied to the 345 KV transmission line system In operation and 765 KV system under consideration. According to the results, the maximum value of field intensity, 6.8627KV/m, is evaluated at the location which is 14m away from transmission line. As the safety criteria value by the abroad researches asserting that the human can detect the Induced current in 6KV/m and above, 5KV/m and 7KV/m are recommended at residence area and nonresidence area, respectively.

  • PDF

Influence of a Magnetic Field on High voltage Discharge Plasma Area for Carbon Nitride Film Deposition (질환탄소 박막 증착 시 고전압 방전 플라즈마에 가한 자장의 영향)

  • 김종일;배선기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • Carbon nitride films were grown on Si (100) substrate by a laser-electric discharge method with/without a magnetic field assistance. The magnetic field leads to vapor plume plasma expending upon the ambient arc discharge plasma area. Influence of the magnetic field has resulted in increased of a crystallite size int he films due to bombardment (heating) of Si substrates by energetic carbon and nitrogen species generated during cyclotron motion of electrons in the discharge zone. The surface morphology of the films with a deposition time of 2 hours was studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.

MAGNETIC PROPERTIES OF FERRITE CORES UNDER DC-BIASED FIELD

  • Fukunaga, H.;Masumoto, S.;Ohta, Y.;Kakehashi, H.;Ogasawara, H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.606-609
    • /
    • 1995
  • Ferrite cores are often magnetized under DC-biased field because they have been intensively used in electronic circuits such as an inverter circuit and a switching regulator circuit. Thus we investigated the effects of DC-biased field on magnetic properties in the frequency range of DC-100kHz for two kinds of ferrite cores, TDK PC38 and TDK $H_{3}S$, which have different shapes of B-H loop from each other. The magnetic loss per cycle, W/f, in the $H_{3}S$ core decreased with increasing the strength of DC-biased field, although W/f in the PC38 core increased monotonically with DC-biased field. The observed decreasing tendency differs from the previous result for Si-Fe and ferrite cores, and can be attributed to decrease in eddy current loss as well as that in hysteresis loss.

  • PDF

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

NOx Removal Using DC Corona Discharge Under Magetic Field (자계하의 DC 코로나 방전에 의한 NOx 제거)

  • Kim, G.H.;Kim, Jong-Dal;Lee, D.C.;Koh, H.S.;Park, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.462-464
    • /
    • 1995
  • In this paper, experiments were carried out to study the decrease of NOx in simulated flue gases (initial concentration of NO 1000, 750, 400 ppm, : $N_2$ balance gas). Characteristics of NOx reduction are measured and analysed in corona discharge of multi needles to plane electrode structure and magnetic field. The best characteristics of NO reduction is measured when electric and magnetic field were supplied to reactor, at same time. Consumption power applied electric and magnetic field were higher than that of discharge applied only electric field.

  • PDF

Simulation of Vacuum Arc Expansion with Magnetic Field (자계가 인가된 진공아크의 확장 모의)

  • 최원준;최승길;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.183-186
    • /
    • 1998
  • Axial magnetic field generated by special electrode construction in vacuum interrupters is used to extinguish electric plasma arcs. This investigation by FDM should prove to what extent the magnetic field might influence on the arc expansion. The calculated results show that the stronger magnetic field induced the lesser radius of arc plasma. This study will help to offer good data in design of vacuum interrupters.

  • PDF

Characteristic Analysis of a Slotless PM Linear Motor Using Analytical Method (해석적 방법을 이용한 슬롯리스형 영구자석 선형 전동기의 특성 해석)

  • Ahn, Ho-Jin;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.116-118
    • /
    • 2001
  • This paper deals with characteristic analysis of a slotless PM linear motor using analytical method. In order to calculate voltage equations, back-EMF waveform and winding inductance are caculated by PM's magnetic field and winding's magnetic field respectively.

  • PDF

New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.

Study on Safety Consideration of ELF Magnetic Fields Emanating from Power Transmission Line for Electric Railways (전철용 성전선로에서 발생되는 극저주파 자기장의 안전성에 관한연구)

  • 임용배
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 1999.07a
    • /
    • pp.156-164
    • /
    • 1999
  • This paper shows that the configuration of power transmission lines currently in place is suitable on the basis of calculated magnetic field strengths. The magnetic fields were computed for typical current distributions on power transmission lines for electric railways, which are characterized by severe load fluctuations and phase distortions. The result of the numerical analysis are compared with th ELF guidelines of magnetic fields from several case studies. The final conclusion reached in that effects of the magnetic fields near power transmission lines for electric railways are not significant enough to cause a biological safety concern.

  • PDF

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.