• Title/Summary/Keyword: Electric Stimulation

Search Result 263, Processing Time 0.023 seconds

Effects of Electric Stimulation and Biofeedback for Pelvic Floor Muscle Exercise in Women with Vaginal Rejuvenation Women (회음부 성형수술 여성에서 전기자극과 바이오피드백을 이용한 골반저근운동의 효과)

  • Lee, Jung Bok;Choi, So Young
    • Journal of Korean Academy of Nursing
    • /
    • v.45 no.5
    • /
    • pp.713-722
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the effects of pelvic floor muscle exercise using electric stimulation and biofeedback on maximum pressure of vaginal contraction, vaginal contraction duration and sexual function in women who have had vaginal rejuvenation. Methods: The research design was a non-equivalent control group non-synchronized design study. Participants in this study were women who had vaginal rejuvenation at C obstetrics and gynecology hospital. The 15 participants in the experimental group were given pelvic floor muscle exercise using electric stimulation and biofeedback and the 15 participants in the control group received self pelvic floor muscle exercise. Results: For maximum pressure of vaginal contraction, the experimental group showed a statistically significant increase compared to than the control group (t=5.96, p <.001). For vaginal contraction duration, the experimental group also showed a statistically significant increase compared to the control group (t=3.23, p =.003). For women' s sexual function, the experimental group showed a significant increase when compared to the control group in total sexual function scores (t=3.41, p =.002). Conclusion: The results indicate that pelvic floor muscle exercise with electric stimulation and biofeedback after vaginal rejuvenation is effective in strengthening vaginal contraction pressure, vaginal contraction and that it also positively functions to increase women's sexual function.

A Simulation Study on Transcranial Direct Current Stimulation Using MRI in Alzheimer's Disease Patients (알츠하이머병 환자의 MRI를 활용한 경두개 직류 전기 자극 시뮬레이션에 관한 연구)

  • Chae-Bin Song;Cheolki Lim;Jongseung Lee;Donghyeon Kim;Hyeon Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2023
  • Purpose: There is increasing attention to the application of transcranial direct current stimulation (tDCS) for enhancing cognitive functions in subjects to aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Despite varying treatment outcomes in tDCS which depend on the amount of current reaching the brain, there is no general information on the impacts of anatomical features associated with AD on tDCS-induced electric field. Objective: The objective of this study is to examine how AD-related anatomical variation affects the tDCS-induced electric field using computational modeling. Methods: We collected 180 magnetic resonance images (MRI) of AD patients and healthy controls from a publicly available database (Alzheimer's Disease Neuroimaging Initiative; ADNI), and MRIs were divided into female-AD, male-AD, female-normal, and male-normal groups. For each group, segmented brain volumes (cerebrospinal fluid, gray matter, ventricle, rostral middle frontal (RMF), and hippocampus/amygdala complex) using MRI were measured, and tDCS-induced electric fields were simulated, targeting RMF. Results: For segmented brain volumes, significant sex differences were observed in the gray matter and RMF, and considerable disease differences were found in cerebrospinal fluid, ventricle, and hippocampus/amygdala complex. There were no differences in the tDCS-induced electric field among AD and normal groups; however, higher peak values of electric field were observed in the female group than the male group. Conclusions: Our findings demonstrated the presence of sex and disease differences in segmented brain volumes; however, this pattern differed in tDCS-induced electric field, resulting in significant sex differences only. Further studies, we will adjust the brain stimulation conditions to target the deep brain and examine the effects, because of significant differences in the ventricles and deep brain regions between AD and normal groups.

Improvement of PENS on Peripheral Nerve Conduction Function in STZ-Induced Diabetic Rats (당뇨유발백서에서 피하신경전기자극의 말초신경기능 개선효과)

  • Kim, Yang-Ho;Chang, Mee-Kyung;Shin, Min-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.19-26
    • /
    • 2006
  • Purpose: This study aimed the effects of percutaneous electric nerve stimulation (PENS) applied to different parts of the streptozotocin-induced diabetic rats on the change of glucose and nerve. Methods: rats (ten weeks old) were selected as the subjects; the normal group was five rats, and the diabetes induction group II, III and IV were five rats, respectively, which were randomly sampled from the twenty-five streptozotocin-administered rats with more than $240\;d{\ell}/m{\ell}$ of blood sugar. For PENS, electric current with 2 Hz of stimulation frequency and $200\;{\mu}s$ of pulse duration was applied to the subjects for fifteen minutes a day, six days a week, for three weeks. Calculation of glucose and weight, and nerve conduction test were conducted forty-eight hours and three weeks after streptozotocin administration, respectively. Results: As for change of glucose and weight, the group III with stimulation to the acupoints and the group IV with stimulation to non-acupoints showed significant differences from the control group II (p<0.05). As for MNCV (motor nerve conduction velocity), the group III with stimulation to the acupoints showed significant differences from the group IV with stimulation to non-acupoints and the control group II (p<0.05). Conclusion: PENS had the effects of inhibiting increase of glucose, change of weight and decrease of nerve conductive function between the distal and proximal ends of the peripheral nerve in the STZ-induced diabetic rats.

  • PDF

The Effect of Electrical Stimulation on Osteoblast Surrounding Dental Implant (치과용 임플란트 주위 뼈모세포에 대한 전기자극의 영향에 관한 연구)

  • Woo, Kyung-Yeup;Kwon, Kung-Rock;Choi, Boo-Byung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.195-206
    • /
    • 2003
  • Several factors can affect the formation of bone tissues surrounding implants. One of the factors is electrical stimulation. It is known to change the movement of cells, form and destroy cells, and alter concentration and chemical component of soft tissues and bones. The effect of electrical stimulation on bone formation can vary according to the intensity of electric currents, stimulating time, the method of sending electric currents, and tissues and cells currents are applied to. This study examines how various enviroments affect osteoblasts. (1) effect on osteoblast with varying intensity of currents Osteoblast-like cells were raised on four plates where implants can be placed. A constant current sink (MC3T3-E1) that can adjust the intensity and stimulating time of electric currents was used. The four plates were stimulated with $0{\mu}A$, $10{\mu}A$, $20{\mu}A$, and $40{\mu}A$, respectively. After 24 hours of stimulation, the number and distribution of cells surrounding implants were examined. (2) effect on osteoblast with varying conditions The 3 study was performed with same method. (1) The change of attached cell number 72-hour after application of various currents (2) The change of attached cell number 72-hour after application of various interval (3) The comparison of attached cell number by implant surface texture The following are the results: 1. The distribution and density of cells surrounding implant is highest under the intensity of electric currents of $20{\mu}A$. 2. The number of cells attached implants is highest under the intensity of electric currents of $20{\mu}A$. 3. The number of cells attached implants is highest under continous electric currents 4. The number of cells attached implants is not different by implant surface texture.

Example Development of Medical equipment applying Power Electronics Technique (전력전자 기술을 응용한 의료장비 개발 사례)

  • Ko Jongsun;Lee Taehoon;Kim Yongil;Kim Gyugyeom;Park Byungrim;Kim Minsun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.661-664
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Afferent signals from those receptors are transmitted to the vestibular nuclear complex, and the efferent signals from the vestibular nuclear complex control the eye movement. The postural disturbance caused by loss of the vestibular function results in nausea, vomiting, vertigo and loss of craving for life. The purpose of this study is to develop a off-vertical rotatory system for evaluating the function of semicircular canals and otolith organs, selectively, and visual stimulation system for stimulation with horizontal, vertical and 3D patterns. The Off-vertical axis rotator which stimulates semicircular canals and otolith organs selectively is composed of a comportable chair, a DC servo-motor with reducer and a tilting table controlled by PMSM. And a double feedback loop system containing a velocity feedback loop and a position feedback loop is applied to the servo controlled rotatory chair system. Horizontal, vertical, and 3D patterns of the visual stimulation for applying head mounted display are developed. And wireless portable systems for optokinetic stimulation and recording system of the eye movement is also constructed. The Gain, phase, and symmetry is obtained from analysis of the eye movement induced by vestibular and visual stimulation. Detailed data were described.

  • PDF

A Remote Medical Treatment System for Stroke Recovery using ZigBee-Based Wireless Brain Stimulator (ZigBee 기반의 무선 뇌자극기를 이용한 원격 뇌졸중 치료 시스템)

  • Yun, H.J.;Yang, Y.S.;Ryu, M.H.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.657-664
    • /
    • 2007
  • Stroke patients need regular medical treatments and rehabilitation training from their doctors. However, severe aftereffects caused by stroke allow them minimum activities, which make it difficult for them to visit doctor. Recently, electric brain stimulation treatment has been found to be better way compared to conventional ones and many are interested in using this method for the treatment of stroke. In this study, we have developed a remote medical treatment system using wireless electric brain stimulator that can help the stroke patients to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receives personal information of the connected patients and cumulates the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can be applied to the electric stimulation treatments for other brain diseases with a minor change.

Effect electric pulse application on the fruit body production of Tricholoma matsutake-In situ condition

  • Islam, Ferzana;Islam, Afsana;Ohga, Shoji
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Effect of electric pulse stimulation was tested on the fruit body formation of valuable mushroom Tricholoma matsutake in the field of natural habitat of this mushroom. After applying the electric stimulator to the specific area of pine forest we found that the treatment especially stimulated the fructification of T. matsutake. And the most valuable findings of our study was that only our treatment plots showed fruit body formation whereas the control plots and the whole natural habitats of our study area showed zero production of this mushroom during the same time. From the point of view of mushroom production, our experiment shows that fruit body production can be upgraded by using pulsed power as an electrical stimulation in the field of the natural habitat of this mushroom. These findings from our experiment confirm the effectiveness of the significance of pulsed power technology for the improvement of T. matsutake fruit body production in the natural habit of this mushroom.

An electric pulp tester using a constant current source (정 전류원 이용한 치수(齒髓) 검사기)

  • Kim, J.S.;Nam, K.C.;Kim, S.C.;Lee, S.J.;Kim, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.720-723
    • /
    • 2003
  • Electric stimulation of teeth is used for assessing pulp vitality. Because of very high and wide range of impedance of the enamel, electric pulp testers use high voltage, high output impedance and alternative current source. Most pulp testers use voltage stimulation method and their stimulating threshold levels significantly depend on each individual. Therefore, a constant current stimulator is necessary to minimize the effect of wide variation in enamel thickness. In this study, we constructed a constant current source type of pulp tester with the maximum current of 150 uA.

  • PDF

Effect of 1Hz Motor Nerve Electrical Stimulation on Joint Range of Motion

  • Jong Ho Kang
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.409-413
    • /
    • 2022
  • Objective: This study aims to compare the range of motion of the joints by applying the contraction and relaxation techniques used in manual therapy as electrical stimulation treatment. Based on this, we would like to propose the possibility of using motor nerve electrical stimulation therapy for musculoskeletal physical therapy. Design: Single-arm interventional study Methods: Active and passive straight leg raising tests were performed on 20 healthy men and women in their 20s to measure the angle of hip joint flexion. Then, the electrical stimulation time was set to 10 seconds and 5 seconds of rest, and motor nerve electrical stimulation of 1 Hz was applied with the maximum strength that could withstand the hamstring muscles for 10 minutes. After electrical stimulation, straight leg raising tests again to confirm the range of motion of the hip joint flexion. Results: As a result of this study, it was confirmed that the joint range of motion was significantly improved for both active and passive straight leg raising tests after application of motor nerve electrical stimulation(p<.05). Conclusions: With a strong electrical stimulation treatment of 1 Hz, the effect similar to the contraction and relaxation technique used in manual therapy was confirmed through the joint range of motion. In the future, motor nerve electrical stimulation therapy can be used for musculoskeletal physical therapy to provide a new approach for patients with reduced pain and joint range of motion due to muscle tension.

A Study on Neuroactive Response Measurement Platform using Mechano Sensor (Mechano sensor를 이용한 신경자극반응 측정 플랫폼에 관한 연구)

  • Kim, Woo-Ram;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.198-201
    • /
    • 2012
  • This is a study about a platform realization measuring the extent of reaction in nerve, as giving a electrical impulse on a nerve pulp regulating a function of muscle, about a measurement of nerve reaction in the amount of current, the lasting time of current, and the position of electrode from a electrical impuls. The position of an electrode in a electrical nerve impuls have nothing to do with all nerves from exercise to all things. There is the Single Twitch Stimulation, Train-of-four, and Double Burst Stimulation in the form of nerve stimulation. This report is needed for selecting MCU of low electric power for a base in embedded system and measuring the extent of reaction after making a sensor interface to know sensitivity of measuring sensor in basic reaction of nerve impuls. The platform is realized to select a high efficiency AD Convertor for raising accuracy in measured data. As the platform in this report was developed for a medical appliances, it was designed to consider user safety in electric power Isolation when making electric power circuit.

  • PDF