• 제목/요약/키워드: Electric Short Circuit Faults

검색결과 31건 처리시간 0.024초

중성선 선로 전압강하를 이용한 단락사고 방지용 보호장치 개발 (Development of Prevention Apparatus for Short-Circuit Faults Using the Line Voltage Drop of Neutral Wire)

  • 곽동걸;김진환;이봉섭
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1953-1958
    • /
    • 2012
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with such electric faults, specially short circuit faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30ms(KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problem, this paper proposes a prevention apparatus using the line voltage drop of neutral wire and some semiconductor switching devices. Some experimental tests of the proposed apparatus confirm the validity of the analytical results.

고정밀 전류센서를 이용한 RCD 보조트립 장치 개발 (Development of RCD Auxiliary Trip Device by using High Precision Current Sensor)

  • 곽동걸
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1532-1537
    • /
    • 2009
  • Nowadays the diversity and large-capacity of electric appliances are strong effect on electrical fires augment in an alarming way. But, as the inactive response characteristics of the existing RCD (Residual Current protective Device) used on low voltage power distribution lines, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore this paper is confirmed the unreliability of the existing RCD by electrical faults simulation and is proposed a auxiliary trip device of RCD by using a high precision current sensor (namely, reed switch) for the prevention of electrical disasters in low voltage power distribution lines caused by overload or electric short circuit faults. The sensitive reed switch in the proposed ATD (auxiliary trip device) exactly detects the increased magnetic flux with the overload or the short current caused by a number of electrical faults, and then rapidly cuts off the existing RCD. The proposed auxiliary trip device of RCD is confirmed the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker through various operation performance analysis. The proposed ATD can also prevent electrical disaster, like as electrical fires, which resulted from the malfunction and inactive response characteristics of the existing RCD.

아크사고 발생 시 전압 왜형파를 이용한 아크차단기 개발 (Development of Arc Fault Circuit Interrupter Using the Distorted Voltage Wave in Electric Arc Faults)

  • 곽동걸
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.876-880
    • /
    • 2013
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The principal factor of the fire is electric arc or spark accompanied with such electric faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30[ms] (KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problems, this paper studies on an arc fault circuit interrupter (AFCI) using the distorted voltage wave in electric arc faults. The proposed voltage sensing type AFCI is an electrical fire prevention apparatus of new conception that operates a circuit breaker with sensing the instantaneous voltage drop of line voltage at electrical faults occurrence. The proposed AFCI is composed of control circuit topology using some semiconductor switching devices. Some experimental tests of the proposed AFCI confirm practicality and the validity of the analytical results.

과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구 (A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults)

  • 조시환;곽동걸;정도영;심재선;김정숙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF

지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구 (Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault)

  • 김진태;이승용;박상진;차한주;김수열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

반도체 스위칭 소자를 이용한 고속 고정밀의 전기화재 방재장치 (A Electrical Fire Disaster Prevention Device of High Speed and High Precision by using Semiconductor Switching Devices)

  • 곽동걸
    • 전력전자학회논문지
    • /
    • 제14권5호
    • /
    • pp.423-430
    • /
    • 2009
  • 최근 저압 배전계통에서 사용되고 있는 과부하겸용 누전차단기 즉, RCD의 저조한 응답특성으로 인한 전기화재 원인의 대부분을 차지하는 단락사고 및 과부하사고에 대한 대응이 매우 미흡한 실정이다. 이에 본 논문에서는 기존 RCD에 대한 모의 사고실험을 통하여 그 비신뢰성을 확인하고, 이러한 RCD의 단점을 개선하고자 내구성과 속응성이 우수한 반도체 스위칭 소자들과 고정밀 전류센서를 이용한 "전기화재 방재장치(EFDPD : Electrical Fire Disaster Prevention Device)"를 제안하여 저압 배전계통에서의 단락 및 과부하사고로 인한 전기재해를 방지하고자 한다. 제안한 장치의 고정밀 전류센서로 사용된 리드스위치는 각종 전기사고에서 수반되는 단락전류 및 과전류에 의한 배전선로의 상승된 자속을 정밀 감지한 후, 자체 차단장치를 동작시키는 원리를 가진다. 다양한 동작특성 분석을 통하여 기존의 차단기와 비교하여 차단동작 응답속도와 그 신뢰성이 입증된다. 이로써 제안한 전기안전 제어장치는 기존 RCD들의 빈번한 오동작과 비신뢰성, 저조한 응답특성으로 인한 각종 전기사고 및 전기화재의 발생을 방지하고자 한다.

권선단락 유형별 동기발전기의 공극자속 파형 분석 (Analysis on Air-Gap Magnetic Flux of Synchronous Generator According to Short-Circuit Types in Winding)

  • 배덕권;김동훈;박중신;이동영;이성일
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.929-935
    • /
    • 2009
  • As modem industrialized society progresses, the demand for electric power is increasing rapidly. The electric power system is getting amazingly bigger and complicated, which can easily induce serious troubles from the potential of large fault problems and/or system failure. The monitoring and diagnosis of the electric machine for the fault detection and protection has been important part in the electric power system. Most faults in the generator appear in the winding. This paper presents the air-gap magnetic flux characteristic of a small-scale 2-pole synchronous generator according to the faults in the field winding to protect the generator from the fault. The magnetic flux patterns in air-gap of a generator under various fault conditions as well as a normal state are simulated by using finite element method. These results are successfully applied to the detection and diagnosis of the short-circuit condition in rotor windings of a high capacitor generator.

3상 전기제어반 전기사고 예방을 위한 계측시스템 설계 (An Instrumentation System Design for Electrical Accident Prevention of 3-Phase Electrical Control Panel)

  • 곽동걸;최정규;김재중;권영준;송강
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.36-37
    • /
    • 2016
  • The main cause of electrical fires are caused due to short circuit and open circuit. This is generates an instantaneous electric arc or spark accompanied with such electric faults. These arcs generate a pressed wire, contact badness, and a weakness in the wire coating etc.. This research proposes a protection circuit to prevent open-phase accident due to contact failure of electromagnetic contactor, tracking arc fault, open-phase within the three-phase electrical control panel which is the most commonly applied in the industry. The proposed circuit also alarms and cuts off of power system when electrical faults occurs. In addition, the proposed circuit is validated by various electric accident simulator.

  • PDF

배전선로 선로전압을 이용한 과부하 사고 예방장치 개발에 관한 연구 (A Study on Development of Over-load Fault Prevention Apparatus using Distribution Line Voltage)

  • 곽동걸;박동훈;박영직;정도영;김동균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.617-618
    • /
    • 2012
  • Recently as the inactive response characteristics of the existing RCD(Residual Current protective Device) used on low voltage power distribution system, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore, this paper is proposed a prevention apparatus using neutral line voltage and semiconductor switching devices for the prevention of electrical disasters in low voltage power distribution system caused by overload or electric short circuit faults. The proposed prevention apparatus confirms the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker(RCD) through various operation performance analysis.

  • PDF

EMTDC Modeling Method of DC Reactor type Superconducting Fault Current Limiter

  • Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.56-59
    • /
    • 2003
  • As electric power systems grow to supply the increasing electric power demand short-circuit current tends to increase and impose a severe burden on circuit breakers and power system apparatuses. Thus, all electric equipment in a power system has to he designed to withstand the mechanical and thermal stresses of potential short-circuit currents. Among current limiting devices, Fault Current Limiter (FCL) is expected to reduce the short-circuit current. Especially, Superconducting Fault Current Limiters (SFCL) offer ideal performance: in normal operation the SFCL is in its superconducting state and has negligible impedance, in the event of a fault, the transition into the normal conducting state passively limits the current. The SFCL using high-temperature superconductors offers a positive resolution to controlling fault-current levels on utility distribution and transmission networks. This study contributes to the EMTDC based modeling and simulation method of DC Reactor type SFCL. Single and three phase faults in the utility system with DC reactor type SFCLs have been simulated using EMTDC in order to coordinate with other equipments, and the results are discussed in detail.