• Title/Summary/Keyword: Electric Resistance Heating

Search Result 75, Processing Time 0.029 seconds

An Experimental Study on Electric Resistivity and Exothermic Property of Electrically Conductive Mortar using Amorphous Graphite (흑연을 혼입한 전기전도 모르타르의 전기저항 및 발열특성에 관한 실험적 연구)

  • Ahn, Hong-JIn;Kim, Sang-Heon;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • The exothermic property of electrical conductivity concrete would allow the heating system of house or snow melting system of tunnel, road or bridge deck. This study was performed on electric resistance, exothermic property and mechanical property of the mortar with graphite of carbon-based conductive material as a fundamental research for the heat conductive concrete development. As the results of this experiment, the increasement on the amorphous graphite substitution rate was found to decrease in the compressive strength, however, the electric resistance was found to be significantly lower. And, in order to demonstrate the exothermic property, the graphite was found to be included more than 15% of the total mortar volume. When low electric resistance obtained with a certain level of the graphite inclusion, exothermic value and applied voltage has a higher correlation, and the exothermic value and the square of the voltage appeared to be in a proportional relationship.

An Experimental Study on the Manufacturing Method and Performance of Planar Thick Film Heaters for Electric Vehicle Heating (전기자동차의 난방용 면상 후막히터의 제조방법과 성능에 관한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.685-692
    • /
    • 2024
  • Currently used heating elements are metal and non-metal heating elements, including various types of heaters, and resistance line heating elements have a problem of decreasing thermal efficiency over time, so to solve this problem, a planar heating element using high-purity carbon materials and oxidation-resistant inorganic compounds was applied. Through the manufacture of planar heating elements using CNT, ruthenium composite materials, and ruthenium oxide, physicochemical performance and capacity were increased, and instantaneous responsiveness was increased. Through thick film technology applicable to various base bodies, fine patterns were formed by the screening method in consideration of the fact that the performance of the heat source depends on the viscosity and pattern shape. The heating element was manufactured by thick film printing technology by mixing ruthenium oxide, CNT, Ag, etc. The characteristics of each paste were analyzed through viscosity measurement, and STS 430 was used as a base. Surface temperature and efficiency were measured by testing heaters manufactured for small wind tunnels and real-vehicle experiments. The surface temperature decreased as the air volume increased, and the optimal system boundary was found to be about 200 mm. Among the currently used heating elements, this paper manufactured a planar heating element using thick film technology to find out the relationship between air volume and temperature, and to study the surface temperature.

A Study on the Measurement of Moisture Content in Concrete (콘크리트의 함수량 측정에 관한 연구)

  • 정상진
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.139-144
    • /
    • 1993
  • 콘크리트부재의 함수량거동을 조사하기 위해 기존연구로부터 함수측정법으로 전기저항에 의한 전극법을 선정하였으며, 전구법으로 철근콘크리트 구조물의 함수량을 측정한 결과, 상온하에서의 함수측정에는 실용성이 있음을 확인하였다. 이같은 전극법은 175$^{\circ}C$ 고온히에서도 사용가능하도록 교정곡선의 작성을 위한 밀도법, 측정한 함수량의 정밀도등을 실험으로 검사한 결과, 고온을 받는 매스콘크리트 부재의 함수량거동이 전극법으로 측정될수 있음을 알 수 있었다.

Standardization of Temperature Measurement System for Stable and Reliable Infrared Thermographical Image (열화상 이미지의 신뢰성 확보를 위한 온도입력시스템의 표준화)

  • Yoon, Se-Hyun;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • This study presents a technique to quantitatively measure the corrosion level of a reinforcing bar using infrared thermography system. We found out electric heating method having an important effect on thermal data in previous study. This study purposed an efficient way for grip standardization to reduce constriction resistance problem, and providing reliable thermal data using infrared thermographic method. Using vise type earth clamp, the surface resistance of rebar was smaller than that of traditional plier type earth clamp through temperature-distribution relationship. Also this study contains experiments with toque wrench to improve heating contact problem.

Fault Diagnosis Device for Fire Prevention of the Resistance Heating Type three-Phase Electric Heater (3상 저항가열식 전기히터의 화재예방을 위한 결함 진단장치)

  • Lee, Mun-Hyung;Kim, Chan-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1669-1674
    • /
    • 2017
  • In this study, We have discussed the development of a diagnostic device to detect and prevent electrical fire due to the arc caused by contact failure and partial disconnection at the connection part of the three-phase electric heater wiring used in the industrial field. The arc caused by contact failure and partial disconnection at the connection part of the electric heater shows a change in the current effective value. Therefore, it is possible to determine whether there exists a defect by analyzing the current unbalance factor and the number of current fluctuations with the diagnostic apparatus. The three-phase unbalanced heater is considered to be capable of determining defects through periodic measurement and trend analysis of the current unbalance factor. It is also expected that this device can be used not only for electric heaters but also for detection of defects in wiring and connections of electrical equipment having a characteristic of constant load current.

A study on the safe operation condition for Bi-2223/Ag tapes with applied alternating currents (교류용 Bi-2223/Ag 선재의 안정 통전 조건에 관한 연구)

  • Yim S. W.;Sohn S. H.;Hwang S. D.;Lim S. H.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.138-141
    • /
    • 2005
  • Bi-2223/Ag tapes need to be safe, even it is under the over-critical current state for the protection of a superconducting power machine. However, it is not easy to identify the condition for the safe operation because of their broad S/N transition region. In this paper, for the study of the operation condition of Bi-2223/ Ag tapes, we investigated the V-I curves and the temperature variation of Bi-2223/ Ag tapes experimentally, applying alternating over-currents, and analyzed the relationship between resistance and temperature increase. For the experiments, a Bi-2223/Ag tape of 57 A $I_c$ was prepared, and the over-critical current characteristics under adiabatic state from $LN_2$ was measured. From the experiments, we confirmed that the Joule heating predicted by V-I curve corresponded with the increase of the measured temperature exactly. Using the results, a safe operation condition of Bi-2223 tape was discussed.

  • PDF

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.131-134
    • /
    • 2009
  • The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.

Study on Physical Properties of Domestic Species I: Sorption, Thermal, Electrical and Acoustic Properties of Pinus Densiflora (국산재의 응용물성연구 I: 소나무(Pinus densiflora)의 수분흡착성 및 열적·전기적·음향적 성질)

  • Kang, Ho-Yang;Byeon, Hee-Seop;Lee, Won-Hee;Park, Byung-Soo;Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.70-84
    • /
    • 2008
  • A series of the studies on the applied physical properties of domestic species have been conducted last three years. Pinus densiflora was one of the three species examined for the first year. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMC's and sorption isotherms at various heating conditions. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences of the thermal and electric properties between quarter- and flat-sawn specimens were observed, which was partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and nondestructive testing wood.

Transient Analysis of Magnetodynamic Systems Using Frequency-dependent Circuit Parameters (주파수 의존적인 회로상수를 이용한 시변자장 시스템의 과도상태 해석)

  • Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.61-63
    • /
    • 1999
  • This paper presents an efficient method for analysis of magnetodynamic system using frequency-dependent parameters. In equivalent electric circuit of linear magnetodynamic system, parameters of inductance and resistance are not constant since they vary with its driving frequency. Once frequency-dependent parameters of equivalent electric circuit for a given system are extracted, they can be used to analyze various characteristics of system. We use the Fourier transform, the high-order sensitivity method and Taylor series in order to efficiently extract the frequency-dependent parameters of magnetodynamic system. The proposed algorithm is applied to an induction heating system to validate its numerical efficiency.

  • PDF