• Title/Summary/Keyword: Electric Power System

Search Result 5,834, Processing Time 0.033 seconds

A Study on Power System Analysis Considering Special-days Load Mobility of Electric Vehicle (특수일 이동을 고려한 전기자동차 충전부하의 전력계통 영향에 관한 연구)

  • Hwang, Sung-Wook;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.253-256
    • /
    • 2016
  • In this paper, the power system with electric vehicles is analyzed considering the mobility and diffusion rate of electric vehicles in the smart grid environment. In the previous studies, load modeling and load composition rates have been researched and the results are applied to develop a new load model to explain the mobility of electric vehicles which could affect on the power system status such as power flow and stability. The results would be utilized to research and develop power system analysis methods considering movable charging characteristics of electric vehicles including movable discharging characteristics which could be affected by the diffusion progress of electric vehicles.

Development of Analysis Model for Metro Railway Power System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전기철도 전력공급시스템 해석모델개발)

  • Jang, Gil-Soo;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.463-467
    • /
    • 2006
  • A direct current electric power system is one of the most important power source in a metro railway system. As railway system is growing up today, the importance of DC electric power system is emphasized. The study for systemization and standardization of design and operation technique in DC electric power system is undergoing nowadays. For these studies, the development of standard analysis model for metro railway electric power system is required. In this paper, a standard analysis model for metro railway electric power system which is using PSCAD/EMTDC program is proposed. The proposed model is explained and the validity is shown by using the case studies.

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

Field Implementation of Voltage Management System (VMS) into Jeju Power System in Korea

  • Shin, Jeonghoon;Nam, Suchul;Song, Jiyoung;Lee, Jaegul;Han, Sangwook;Ko, Baekkyung;An, Yongho;Kim, Taekyun;Lee, Byungjun;Baek, Seungmook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.719-728
    • /
    • 2015
  • This paper presents the results of field tests on Voltage Management System (VMS) using hybrid voltage control, which utilizes coordinated controls of various reactive power resources such as generators, FACTS and switched shunt devices to regulate the pilot bus voltage in a voltage control area. It also includes the results of performance test on RTDS-based test bed in order to validate the VMS before installing it in Jeju power system. The main purpose of the system is adequately to regulate the reactive power reserve of key generators in a normal condition with coordination of discrete shunt devices such as condensers and reactors so that the reserves can avoid voltage collapse in emergency state in Jeju system. Field tests in the automatic mode of VMS operation are included in steady-states and transient states. Finally, by the successful operation of VMS in Jeju power system, the VMS is proved to effectively control system voltage profiles in steady-state condition, increase system MVAR reserves and improve system reliability for pre- and post-contingency.

A Study on the Reliability Evaluation of a Transmission System

  • Seungpil Moon;Jinboo Choo;Kim, Kyeongho;Donghoon Jeon;Park, Jaeseok
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.119-123
    • /
    • 2003
  • Successful operation of power systems under the deregulated electricity market depends on the management of the transmission system reliability. Quantitative evaluation of the transmission system reliability is an important issue. Particularly, the nodal reliability indices can be of value in the management and control of congestion and reliability of the transmission system under the deregulated electricity market. In this study, a method developed for the reliability evaluation of the transmission system is presented. The Monte Carlo methods are used because of their flexibility when complex operating conditions are being considered. The usefulness and effectiveness of the proposed method are illustrated by a case study with the KEPCO system.

Database Structure and Information Exchange System of KEPCO's EMS SYSTEM (한전(韓電)EMS의 데이터베이스 및 정보교환체제(情報交換體制))

  • Lee, Kyung-Jae;Yu, Sung-Chul;Kim, Yeong-Han;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.87-91
    • /
    • 1988
  • For the electric power system operation, the information to monitor the operation status of power plants and transmission lines is very important factor in the view point of system security and economic operation. This paper presents the logical and physical structures of database used by KEPCO's EMS. The adopted DataBase Management System (DBMS) of a relational model type offers many advantages such as easy maintenance of database. In addition, this paper briefly introduces the data exchange system between application programs and database.

  • PDF

Consideration on the trial operation of 765kV substation (765kV 변전소 시운전에 관한 고찰)

  • Byun, Gang;Jung, S.H.;Park, K.W.;Lee, S.M.;Choi, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.29-31
    • /
    • 2002
  • Purpose of the 765kV trial operation conducted for the first time in our country are performance verification of domestic developed equipment(765kV M.Tr, GIS,etc) and extraction of problem in advance to commercial operation and cultivation of operation ability. The trial operation of 765kV substation was finished successfully under the positive supports of institutes. manufactures. and constructers. It is expected that extraction of problems in advance and accumulation of operation techniques through the trial operation of 765kV substation will be contributed largly to the realization of the without a hitch operation of 765kV system.

  • PDF

Study on the Oversea Technology Development of Electric Power Storage System and It's Domestic Application (전력저장시스템 기술개발 국외동향 분석 및 국내 활용방안 연구)

  • Choi, Kyung-Shik;Yang, Seung-Kwon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • As the technology of a large scale battery have advanced, it's application to the electric power network have been active in foreign country. By providing the electric power energy stored in the electric power storage system when needed, there are many advantages that it is able to reduce the gap between the electric power demand and supply for day and night to increase capacity factor, to upgrade the electric power quality degraded from the unbalance between power demand and supply and to compensate the fluctuation of wind power plant and photovoltaic power generation. In this study, the current application of electric power storage system using battery is introduced in detail, and I have thought out it's application fields based on the foreign examples. These are demand side response, upgrade of the power quality, stabilization of fluctuation of renewable energy and distributed generation for filling elapse.

  • PDF

Modeling and Analysis of the KEPCO UPFC System by EMTDC/PSCAD

  • Yoon, Jong-Su;Kim, Soo-Yeol;Chang, Byung-Hoon;Lim, Seong-Joo;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.148-154
    • /
    • 2003
  • This paper describes the development of KEPCO's 80MVA UPFC electromagnetic transient model and the analysis of its performance in the actual Korean power system. KEPCO's 80MVA UPFC is currently undergoing installation and will be ready for commercial operation from the year 2003. In order to apply a new FACTS device such as the UPFC to the actual power system, the utility needs, in advance, both load flow stability studies and transient studies. Therefore, KEPRI, the research institute of KEPCO, developed a detailed transient analysis model that is based on the actual UPFC S/W algorithm and H/W specifications. This simulation model is implemented by an EMTDC/PSCAD package. The results of the simulation show the effectiveness of UPFC operation in the KEPCO power system.

The Overview of a Digital Power System Simulator for Large Power System Analysis

  • Kim, Tae-Kyun;Kim, Yong-Hak;Shin, Jeong-Hoon;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.93-99
    • /
    • 2003
  • This paper deals with the development and testing of a large-scale, realtime digital power system simulator for the Korean Electric Power Corporation. The KEPS Simulation Center is located at KEPCO's research center (KEPRI) in Taejon, South Korea and has been operated since September 2001. The KEPS Simulation Center includes a wide range of off line power system simulation and analysis tools, as well as an advanced realtime digital simulator for the study of large scale AC and DC system performance. Because the application scope of the KEPS realtime simulator is broad and because the network models being considered are significantly larger and more complex than in traditional realtime simulator applications, many developments and tests have been required during the course of the project. In this paper, the authors describe some of these developments and present results from various benchmark tests that have been performed.