• Title/Summary/Keyword: Electric Potential Rise

Search Result 63, Processing Time 0.024 seconds

A Study on Investigation Method of the Electric Fire Scene Caused by Lightning (낙뢰로 인한 전기화재의 현장조사기법 연구)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • In recently years, occurrences of lightning return strokes have been increased by global worming effect and intensity of lightning impulse voltage and current accompanied by lightning discharges has being strengthening. In Korea, 560 thousand lightning discharges happened in 200S. According to the increasing frequencies of lightning, human deaths and damages to the structure have been increased steadily. Electric fire caused by lightning return strokes due to the breakdown between power line and ground line from the ground potential rise on a process of the lightning impulse current through to the ground. The damages of lightning were occurring at same time in the neighboring areas of the lightning point. In order to protect from the lightning stroke, we made a suggestion to use protection devices and equipotential bonding at the dangerous areas. The analysis results of electric fires caused by lightning would be utilized to investigate and to find accurate fire cause in the fire scenes.

An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents (접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석)

  • Choi, Jong-Hyuk;Cho, Yong-Sung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

The Analysis of Structure Grounding Using Reduced Scale Model (축소모델을 이용한 구조체 접지 분석)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2046-2048
    • /
    • 2005
  • This paper deals with ground potential rise of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage in concrete attached to structure, the potential distribution of ground surface appeared differently.

  • PDF

A Study on the Optimal Divergence Spacing of the Connecting Grounding Rod to the Dangerous Voltage in the Global Earthing Network of Urban Rail Transit (도시철도 통합접지망에서의 위험전압에 따른 연접접지봉의 최적 분기간격에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Kim, Jin-Hee;Kim, Jae-Moon;Cho, Dae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1374-1379
    • /
    • 2012
  • Urban rail transit tends to global grounding system in order to control ground potential rise and potential differences between electric equipments. In addition, global grounding system can discharge the large capacity surge current to the ground safely. Since some railway electric equipments are installed all section of line, the global grounding system connected with the connecting grounding wire is more effectively. However, if the fault occurred in the connecting grounding wire area, some dangerous voltage is generated. So, the installation of additional grounding rod will be required. In this study, the global grounding system is simulated using CDEGS program to analyze the divergence spacing of additional ground rod depending on dangerous electric potential characteristics. Grounding net of the each station is modelled in depending on the size of the platform, and the spacing of the connecting grounding rod are compared 50m, 100m, 250m and 400m. Simulation results considering of earth resistivity and underground condition of the connecting grounding wire, spacing of the connecting grounding rod is that less than 250m to spacing of the ground rod was appropriately confirmed.

The Optimization Grounding Analysis for Soil Resistivity (대지저항률에 따른 최적화 접지 해석)

  • Jung, Yeon-Ha;Jang, Tae-Jun;Kwak, Hee-Ro;Roh, Young-Su;Shong, Kil-Mok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.241-245
    • /
    • 2004
  • The electric safety tends to be more important according to electric facilities's increase and its use in these days. This paper analyzes soil resistivity of two areas in the country using CDEGS(Current Distribution, Electromagnetic Interference, Grounding and Soil Structure, Canada). We designed rod and mesh grounding system and made a comparative study of ground resistance, GPR(Main Electrode Potential Rin), step voltage and touch voltage. Then we could analyz only the safety but also economical efficiency in elocution of grounding. As a result of simulation, ground resistance, GPR(Main Electrode Potential Rise), step voltage and touch voltage became higher in proportion to soil resistivity. Therefore we expect to estimate the propriety of grounding system design through accumulation and analysis of data in consideration of characteristics of soil.

  • PDF

The National Economic Effects of Four Power Generation Sectors: Using an Industrial Linkage Analysis (발전부문별 국민경제적 파급효과 분석 - 산업연관분석을 적용하여 -)

  • Kwa, Seung-Jun;Yoo, Seung-Hoon;Han, Sang-Yong
    • Environmental and Resource Economics Review
    • /
    • v.11 no.4
    • /
    • pp.581-608
    • /
    • 2002
  • The electric power industry has played an important role in dramatic economic development in Korea and the electricity has constituted a critical factor sustaining the well-being of the Korean people. This study uses input-output analysis to investigate the role of four electric power sectors (hydroelectric, fossil-fuels, nuclear and non-utility) in the Korean national economy for the period 1985~1998, focusing on four topics: the impacts of electricity supply investments, the electricity supply shortage effects, and the impacts of the rise in electricity rates, and the inter-industry linkage effect. The overall results reveal that non-utility electric sector is superior in terms of the national economy-wide effects to other three sectors throughout the period. Finally, potential uses of the results are illustrated from the perspective of policy instruments and some policy implications are discussed.

  • PDF

A Study on the Generation of the Earth Potential and Communication Line Noise (대지전위와 통신회선 잡음.발생에 대한 고찰)

  • Yeo, Sang-Kun;Park, Chan-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.181-189
    • /
    • 2007
  • This paper presents a experimental evidence of the generation of the earth potential and communication line noise from the electric railway. There is a critical measurement err in case of measuring the electrical power induced noise voltage and degree of cable balance in the field of earth potential generated. As a results, it has been found that the conventional cable has more noise immunity than shielded cable near the railway where the earth current flows through the sheath layer.

Reduction of the the Ground Surface Potential Gradients by Installing Auxiliary Grounding Grids (보조접지그리드의 시설에 의한 대지표면전위경도의 저감)

  • 이승칠;엄주홍;이복희;김효진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2002
  • The present paper describes a technique for installing an effective grounding grids, the major objective is forced on the experimental evaluation of the performance and characteristics with the arrangement and installation method for grounding grids consisting of the means to protect electric shock, electronics and computerized facilities against lightning, switching and ground fault surges. The study is oriented on two major areas: (1) the analysis of the ground surface potential gradient with the arrangement of grounding grids, (2) the control of the dangerous ground surface potential rise. The experiments wee carried out with the impulse currents as a function of the installation method or arrangement of grounding grids. An installation method of the inclined auxiliary grounding grid was proposed to overcome the drawbacks of equally spared grounding grids, i.e. an appropriate design concept far the installation of grounding grids was found out, It has been shown that the installation of the intwined auxiliary grounding grid can also result in a mere than 50% decrease in the maximum potential gradient on the ground surface and enhance the level of safety for persons and electronic equipments..

Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution Grid

  • Mets, Kevin;D'hulst, Reinhilde;Develder, Chris
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.672-681
    • /
    • 2012
  • A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.

Study for the Grounding Resistance of the Mesh Grounding Electrode by Water Tank Model (수조모델을 이용한 메쉬접지극의 접지저항에 관한 연구)

  • Kim, Ju-Chan;Kim, Sung-Sam;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.28-35
    • /
    • 2006
  • Recently, a number of equipments related with electricity, electronics, and communication in the same building are needed to the grounding system for safety from unexpected accidents. When the faulted electric current flows into a certain grounding system, the potential rise in that system takes place and it might induce the potential rise to other grounding system. This potential interference was strongly affected by the surface potential, which was deeply related with the electrode shape. In this paper, the fundamental formula was deduced on the basis of surface potential of two grounding electrodes. Which corresponds to source of the potential interference and other grounding electrode, respectively. Therefore, the degree of potential interference in this mesh grounding electrode system was verified by the simple model simulation. In addition, in order to identify the difference between the grounding resistance in the realistic construction site and the expected value from the corresponding simulation, the experiment was performed with model on a reduced scale about the realistic grounding system. It consists of stainless steel hemisphere electrodes in a water tank. From this work, the grounding resistance in the mesh grounding electrode showed the good coincidence results between those. Consequently, it is confirmed that the grounding resistance in the mesh electrode is possible to be estimated by performing the experiment using the water tank model.