• Title/Summary/Keyword: Electric Discharge Machining

Search Result 96, Processing Time 0.036 seconds

A Study for its Characteristics with Electric Variation in an Electrical Discharge Machining (방전가공에서 전기적 변화가 갖는 방전 특성에 관한 연구)

  • 신근하
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.72-79
    • /
    • 1997
  • A study is a experiment which is figure out to optimum discharge cutting condition of the surface roughness, electronic discharging speed and electrode wear ration with Ton , Toff and V(voltage) as an input condition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

Characteristics of Surface Roughness According to Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (III) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (III))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Recently, high-efficiency machining in the production of high-value products with complex shapes has constantly been required along with the need for hybrid machining. In this study, in addition to wire-cut Electric Discharge Machining (EDM) and vibration, we present the possibility of a hybrid process by carrying out an experiment with aluminum alloy, and the hybrid process determines the nature of the surface. The selected experimental parameters are waveform, amplitude, peak current, and two-dimensional (2D) vibration. The experimental results give the guideline for selecting reasonable machining parameters. The surface roughness was improved about 20% with increases in the amplitude of the vibration.

A study on the effects of second cut on the roughness of surfaces treated with wire-cut electric discharge machining (W-EDM) (2차 가공이 와이어 컷 방전가공면 표면조도 분포에 미치는 영향에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.58-62
    • /
    • 2012
  • Unlike conventional single special cut methods, W-EDM is a combination of multiple-effects. This study focuses on the effects of second cut on the roughness of surfaces treated with W-EDM. W-EDM is, to a large extent, typical unmanned-machining equipment, which represents NC machining equipment that allows long-time full automation. W-EMD is getting popular as a precise machining technology and STD11 is frequently used in press die manufacture. In this study, the former is applied to the latter to look at the effects of second cut on the roughness of surfaces treated with W-EDM.

  • PDF

A Study on the Characteristics of Wire-Cut Electrical Discharge Machining for STD-11 Alloy Steel and P-20 Tungsten Carbide Alloy (STD-11 합금공구강과 P-20 초경합금재의 WEDM 특성에 관한 연구)

  • Lee, Jae-Myeong;Heo, Seoung-Jung;Kim, Won-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 1996
  • From the experimental study of Wire-Cut Electric Discharge Machining of STD-11 alloy steel and P-20 tungsten carbide, the characteristics such as hand drum form and discharge gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, thickness become thinner, wire tension become larger and the no of cutting increases. When 60mm thickness tungsten carbide is cut in normal condition, hand drum form becomes larger due to the low conductivity machining allowance become slightly larger when peak discharge current and gap voltage become larger, or wire tension becomes smaller. Under the same condition, machining allowance of tungsten carbide is larger than alloyed steel by 1/100mm.

  • PDF

A Study on the Hand drum form of Wire-Cut Electric Discharge Machining (와이어 방전가공에 의한 북현상에 관한 연구)

  • 김원일;이재명;강종표
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.9-14
    • /
    • 1997
  • From the experimental study of wire-cut Electric Discharge Machining for alloyed steel and tungsten carbide, the characteristics such as hand drum form has been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, their thickness become thinner, wire tension become larger and number of cutting is done so many times. When wire-cut 60mm thickness tungsten carbide in normal condition, Hand drum form becomes larger due to the low conductivity inducing cobalt composite rising by electrolysis.

  • PDF

Optimization of Process Parameters for EDM using Taguchi Design (Taguchi법에 의한 방전가공의 공정변수 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.78-83
    • /
    • 2015
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SM45C. The work material was ED machined with graphite and copper electrodes by varying the pulsed current, voltage and pulse time. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.