• Title/Summary/Keyword: Electric Coupling

Search Result 444, Processing Time 0.025 seconds

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

The Susceptibility of LNA(Low Noise Amplifier) Due To Front-Door Coupling Under Narrow-Band High Power Electromagnetic Wave (안테나에 커플링되는 협대역 고출력 전자기파에 대한 저잡음 증폭기의 민감성 분석)

  • Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.440-446
    • /
    • 2015
  • This study has examined susceptibility of LNA(Low Noise Amplifier) due to Front-Door Coupling under Narrow-Band high power electromagnetic wave. M/DFR(Malfunction/Destruction Failure Rate) was measured to investigate the diagnostic of IC test. In addition, decapsulation analysis was used to understand the inside of the chip state in LNA devices. The experiments is employed as an open-ended waveguide to study the destruction effects of LNA using a 2.45 GHz Magnetron as a high power electromagnetic wave. The susceptibility level of LNA was assessed by electric field strength, and its failure modes were observed. The malfunction of LNA device has showed as the type of self-reset and power-reset. The electric field strength of malfunction threshold is 524 V/m and 1150 V/m respectively. Also, he electric field of destruction threshold is 1530 V/m. Three types of damaged LNA were observed by decapsulation analysis: component, onchipwire, and bondwire destruction. Based on these results, the susceptibility of the LNA can be applied to a database to help elucidate the effects of microwaves on electronic equipment.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

Vulnerability Analysis of Network Communication Device by Intentional Electromagnetic Interference Radiation (IEMI 복사에 의한 네트워크 통신 장비의 취약성 분석)

  • Seo, Chang-Su;Huh, Chang-Su;Lee, Sung-Woo;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • This study analyzed the Vulnerability of Network Communication devices when IEMI is coupled with the Network System. An Ultra Wide Band Generator (180 kV, 700 MHz) was used as the IEMI source. The EUTs are the Switch Hub and Workstation, which are used to configure the network system. The network system was monitored through the LAN system configuration, to confirm a malfunction of the network device. The results of the experiment indicate that a malfunction of the network occurs as the electric field increases. The data loss rate increases proportionally with increasing radiating time. In the case of the Switch Hub, the threshold electric field value was 10 kV/m for all conditions used in this experiment. The threshold point causing malfunction was influenced only by the electric field value. The correlation between the threshold point and pulse repetition rate was not found. However, in case of the Workstation, it was found that as the pulse repetition rate increases, the equipment responds weakly and the threshold value decreases. To verify the electrical coupling of the EUT by IEMI, current sensors were used to measure the PCB line inside the EUT and network line coupling current. As a result of the measurement, it can be inferred that when the coupling current due to IEMI exceeds the threshold value, it flows through the internal equipment line, causing a malfunction and subsequent failure. The results of this study can be applied to basic data for equipment protection, and effect analysis of intentional electromagnetic interference.

A Performance Test Equipment for Rechargeable Electric Tools

  • Lee, Jong-Kwang;Lim, Hyo-Jae;Park, Min-Kyu;Koh, Jin-Ha;Lee, Kyu-Won;Kang, E-Sock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.5-68
    • /
    • 2002
  • For the performance test of rechargeable electric tools, it is necessary to test under the same condition as the actual operation condition. They are necessary to control the load torque and to acquire the test data with a computer, and it should be convenient to fix the tool on the test equipment for rechargeable electric tools. It consists of torque loading parts, sensing parts and control software. Two hysteresis brakes, connected serially with flexible coupling, were applied to control the load for the test. The sensing part consists of a torque sensor, a rpm detector and a power analyzer. The torque and the rpm were measured in order to calculate the output of the rechargeable electric...

  • PDF

Low-Pass Filter with Wide Stop-Band Characteristics Using Controllable Transmission Zeros (제어 가능한 전송 영점을 이용한 광대역 차단 특성을 갖는 저역 통과 필터)

  • Lee, Geon-Cheon;Kim, Yu-Seon;Kim, Kyung-Keun;Lee, Tae-Sung;Na, Hyeon-Sik;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.887-894
    • /
    • 2007
  • In this paper, design and fabrication of the LPF with controllable four transmission zeros using electric coupling and added open stub is presented. Pass-band of the LPF is GSM band, and two transmission zeros are generated by the electric coupling at the WiBro and S-DMB band, And the other two transmission zeros are generated by the open stub at the upper frequencies. Harmonic frequency of the stop-band is suppressed by the realization of the filter using quasi-lumped element with small parasitic values. $C_M$, which is the electric coupling element of the equivalent circuit, is realized by the distance control between the open stubs of the filter structure. The fabricated LPF used teflon substrate with relative permittivity of 2.6. And it has a size of $38{\times}20{\times}0.79 mm^3$, which is including a feed line. The measured 3 dB cut-off frequency is 1.55 GHz, and locations of the transmission zeros are 2.20, 2.43, 4.11 and 6.84 GHz, respectively.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.

Corona generated Radio Interference of the 750 kV AC Bundle Conductors in Sandy and Dusty Weather Condition in the High Altitude Area

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Wan, Bao-Quan;Pei, Chun-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1704-1711
    • /
    • 2014
  • Sandy and dusty weather condition often occurs in the high altitude areas of China, which may greatly influence the corona generated radio interference (RI) characteristics of the bundle conductors of 750 kV AC power transmission lines. Corona generated RI of the conductors of the 750 kV AC power transmission lines used in practice is measured by EMI receiver with a coupling circuit and a coupling capacitor connected between the high voltage side and the earth side in fine and sandy and dusty condition. The measuring frequency is 0.5 MHz, and the quasi-peak detection is used. RI excitation function is calculated based on the corona RI current measured by the EMI receiver. Corona generated RI characteristics were analyzed from sand concentration and sand particle size. The test result shows that the corona generated RI excitation function is influenced by the sandy and dusty condition. Corona discharge of the conductors is more serious in sandy and dusty condition with an ultraviolet (UV) detector. Corona generated RI excitation function increases with the increase of sand concentration and also increases with the increase of particle size.