• Title/Summary/Keyword: Electric Coupling

Search Result 444, Processing Time 0.023 seconds

A Study on Transmission Efficiency of Wireless Power Induction and Resonant Charging Methodologies (무선 유도 및 공진 충전방식의 전송효율 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.747-750
    • /
    • 2019
  • Wearable devices have become practically indispensable to daily life and helped people track and manage fitness, health, and medical functions etc. As these wearable devices become smaller and more comfortable for the user, the demand for longer run time and charging ways presents new challenges for the power management engineer. Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smart phone to high power electric railroad and main electrical grid. There are two kinds of WPT methods: Inductive coupling and magnetic resonant coupling. The model using magnetic resonant coupling method is designed for a resonant frequency of 13.45 MHz. In this study, the hardware implementations of these two coupling methods are carried out, and the efficiencies are compared.

A study on characteristics analysis of 5kW Small-scaled Inductive Power Transfer Module for Railway Vehicles (철도차량용 5kW급 유도급전 축소 모듈의 특성 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Jung, Ho-Sung;Kim, Ki-Byung;Kim, Chul-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1675-1680
    • /
    • 2011
  • Inductive power transfer module(IPTM) is a contact-less power supply device and its application range has been extended to the large capacity devices such as electric vehicles, industrial mover and railway system as well as small capacity devices such as electric toothbrush charger, celluar phone charger, and so on. For railway application, the IPTM will transfer energy while train stops at a station for around 30[sec]. Therefore, equivalent circuit parameters and coupling coefficient of IPTM are an important design factor for the high energy transfer efficiency. This paper investigates the properties of equivalent circuit parameters and coupling coefficient of U-U type IPTM and U-I type IPTM using an analytical method and experimental method. Considering the coupling coefficient of the U-U type is larger than U-I type's, the U-U type is suitable for an application which need maximum power transfer and high efficiency.

  • PDF

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Electrical Properties of Piezoelectric Ceramics for Ultrasonic Welder (초음파 융착기용 압전 세라믹스의 전기적 특성)

  • Lee, Su-Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.201-204
    • /
    • 2018
  • We know that the piezoelectric constant d, the dielectric constant, and the electric-mechanical coupling coefficient affect the output for piezoelectric ceramics used in ultrasonic welders. Therefore, in this study, the characteristics of ceramics according to the changes of additives to the components of PZT-PMN-PZW were examined. When the addition amount of $MnO_2$ was 2 wt%, the most excellent properties were shown, which suggested the applicability as a material for fusion welding.

Testbed Design of PWM Controlled High Voltage Relay (PWM 제어용 고전압 릴레이의 테스트베드 설계)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.419-424
    • /
    • 2017
  • The purpose of this study is to develop a virtual testbed capable of predicting the functional performance of a linear electromagnetic actuator for a high voltage relay in order to reduce its development costs and time. The virtual testbed is defined by a multiphysics coupling approach in order to consider the complex interactions of multi-domains such as the solenoid model of electromagnets, the mass-spring-damper model of mechanical systems, the electric circuit model for an external control unit, and the thermal model for predicting temperature variations. The performances of the existing high voltage relay were estimated by the virtual testbed, and then the effectiveness and validation of the proposed testbed were discussed in comparison with the experimental test results. This study showed that the virtual testbed can be applied in design, optimization, and investigation of high voltage relays.

Piezoelectric and Acoustic Properties of Ultrasonic Sensor Using 2-2 Piezocomposites

  • Lee, Sang-Wook;Nam, Hyo-Duk;Ryu, Jeong-Tak;Kim, Yeon-Bo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.215-218
    • /
    • 2005
  • We have investigated on the development of 2-2 piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 piezocomposites sensor which were fabricated using dice-and-fill technique for the different volume fraction of PZT. The resonance characteristics measured by an impedance analyzer were similar to the analysis of finite element method. The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics shows that the 2-2 piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

  • PDF

Poling Effect on Piezoeletric Ceramics for Air Medium (공기 매질에 의한 압전 세라믹스의 분극효과)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.464-470
    • /
    • 2010
  • A new method for the poling of piezoelectric ceramics with an air insulation medium in stead of silicon oil is described. A similar variation of electromechanical coupling coefficient $K_t$, for an air medium is observed in comparison to that of the material poled by the conventional poling method using a silicon oil medium. Different poling parameters such as dielectric constant $\varepsilon^T$ and frequency deviation ${\Delta}f$ are studied as well as the influence on the aging effect. The required poling factors to achieve the optimal piezoelectric characteristics are electric field, 2 kV/mm, temperature $100^{\circ}C$, and poling time 30 Min. From this result electric field 3 kV/mm atmosphere airs there being will be able to use with the polarization insulation medium about the piezoelectric material, confirmed.

Study on Electro-Mechanical Coupling Effect of EAPap Actuator

  • Zhao, Lijie;Li, Yuanxie;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.640-643
    • /
    • 2006
  • In this paper, electro-mechanical coupling of cellulose-based Electro-Active Paper (EAPap) actuator is investigated by measuring induced strain and mechanical properties with and without electric excitation. The maximum induced in-plane strain is measured at the orientation angle of 45? samples. The elastic modulus and strength of EAPap are increased with electric excitation and the orientation angle of $45^{\circ}$ samples shows the largest increment of mechanical properties. From the observations, shear piezoelectricity is considered as the major piezoelectric mode of EAPap.

  • PDF

Beam Efficiency of Wireless Power Transmission via Radio Waves from Short Range to Long Range

  • Shinohara, Naoki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Wireless power transmission (WPT) is useful technology in near future. There are some kinds of the WPT technologies, WPT via radio waves, resonance coupling, and inductive. Especially the WPT via radio waves is used for multi-purposes from short range to long range application. However, unfortunately it is misunderstood that it is low efficiency and low power. In this paper, I show the theory of beam efficiency between transmitting antennas and receiving antennas and also show some high efficient applications of the WPT via radio waves. Especially, I pick up a wireless power charging system of an electric vehicle and show the experimental results. I show difference between the theory of beam efficiency and the experimental results of short range WPT. I indicate that reasons of poor beam efficiency in the experiment are (1) change of impedance caused by mutual coupling between transmitting antennas and receiving antennas, (2) oblique direction of microwave power to receiving antennas caused by short distance.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.