• Title/Summary/Keyword: Electric Conduction

Search Result 329, Processing Time 0.041 seconds

Analysis of Anisotropical Electrical Conduction Properties of Maleate System LB Ultra-thin Films (말레에이트계 LB초박막의 이방성 전기전도 특성의 해석)

  • Choe, Yong-Seong;Kim, Do-Gyun;Yu, Seung-Yeop;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We have fabricated LB ultra-thin films of maleate system by LB technique and evaluated the deposited status of LB ultra-thin films by I-V characteristics such as capacitance. It was found that the thickness of LB ultra-thin per layer is $27~30[{\AA}]$ by XRD. And, we have known that the conductivity along the horizontal direction of LB ultra-thin films was about $10^{-8}[S/cm]$, it corresponds to the semiconducting materials. Also, the I-V characteristics along the vertical direction of LB ultra-thin films was dominated by Schottky type current, the activation energy obtained by current-temperature characteristics was about 0.84[eV] and the conductivity was about $10^{-14}[S/cm]$, it corresponds to the insulator. And, the anisotropic conduction mechanism of the LB ultra-thin films in vertical direction and horizontal direction is determined by the hydrophilic group and the hydrophobic group in LB ultra-thin films. The above results are applicable to the semiconductor devices such as switching device, which function at the molecular level.

  • PDF

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

Design of a Cooling System for a portable HTS Superconducting Magnetic Energy Storage Using a Solid Nitrogen (고체질소를 이용한 이동형 초전도 에너지 저장장치용 냉각 시스템 설계)

  • Kim, K.L.;Song, J.B.;Kim, K.J.;Lee, J.H.;Lee, H.G.;Koh, D.Y.;Kim, S.H.;Seong, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.27-31
    • /
    • 2008
  • In order to cool the SMES coil to the operating temperature, conduction cooling is generally used. However, it often consumes a large amount of electric power because of it's continuous cryocooler operation. This can also lead to poor thermal stability and serious protection problems of the system. Solid nitrogen (SN2) can counter those disadvantages in the conduction cooling system because it has a large heat capacity. Particularly, a large amount of enthalpy with a minimal weight to the cold body of SN2 makes a compact and portable system by increase a recooling to recooling time period (RRTP) value. A conceptual design of the proto-type SN2 cooling system for a portable HTS superconducting magnetic energy storage (SMES) system will be introduced in this paper.

Electrical Conduction of Polyethylene/Ethylene Vinyl Acetate Blend (Polyethylene/Ethylene Vinyl Acetate Blend의 전기전도현상)

  • Lee, Chang-R.;Kim, Ok;Lee, Mi-Kyung;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.115-119
    • /
    • 1995
  • Electrical conduction characteristics of Polyethylene/Ethylene vinyl acetate blends of varing vinyl acetate content(1% and 4%) were investigated at electric fields ranging from 10$\^$6/ to 10.$\^$8/ V/cm over the temperature range of 30 and 85$^{\circ}C$. It was obser-ved that the extent of current density was changed at the blends and the rate of change of current den-sity was slightly suppressed at high field range, but PE and EVA were not shown. The change of con-duction characteristics and a suppression in rate of change of current density were attributed to the VA content in PE.EVA blends.

  • PDF

Polymeric Gel Electrolytes for Electric Double Layer Capacitors (전기이중층 캐패시터에 관한 폴리머 겔 전해액)

  • Morita, Masayuki;Qiao, Jin-Li
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.141-144
    • /
    • 2003
  • Proton conducting polymeric gels as the electrolytes of electrochemical capacitors have been prepared by two different methods: 1) swelling a polymethacrylate-based polymer matrix in aqueous solutions of inorganic and organic acids, and 2) polymerizing complexes of anhydrous acids and prepolymers with organic plasticizer. The FT-IR spectra strongly suggest that the carbonyl groups in the polymer matrix interact with protons from the doped acids. High ionic (proton) conductivity in the range of $6\times10^{-4}-4\times10^{-2}\;S\;cm^{-1}$ was obtained at room temperature for the aqueous gels. The non-aqueous polymer complexes showed rather low ionic conductivity, but it was about $10^{-3}\;S\;cm^{-1}\;at\;70^{\circ}C$ for the $H_3PO_4$ doped polymer electrolyte. The mechanisms of ion (proton) conduction in the polymeric systems are discussed.

The Effect of Ion Exchange Membrane on the Electrical Conduction in Metal Fuel Cell (금속연료전지에서 이온교환막이 전기전도에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2235-2239
    • /
    • 2010
  • In this study, The cation exchange membrane and the anion exchange membrane affect in electrical conduction of metal fuel cell was investigated. Magnesium material as anode electrode and the NaCl solution dissolved with 5~15wt% as electrolyte were used for the metal fuel cell. It was found that magnesium slag where flows toward the air electrode was suppressed by using ion exchange membrane. The open circuit voltage variation during discharge has very flat pattern by using ion exchange membrane, but the case which is not the exchange membrane, the open circuit voltage increased according to time. When using the anion exchange membrane, the electric current was higher case of the cation exchange membrane, as a result of higher equivalent conductivity in anion Cl-. The cation exchange membrane was observed with the fact that the output power is excellent in compared with anion exchange membrane.

Analysis of electron emission mechanism in surface conduction electron emission displays (표면전도 전자방출 표시장치의 전자방출 구조해석)

  • 김영삼;김영권;오현주;조대근;길도현;김대일;강준길;강승언;최은하
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.410-416
    • /
    • 1999
  • It is confirmed that the cause of anode current in SEDs (surface conduction electron emission displays) is the inertial force of electron emitted from the cathode surface in the calculation of electron trajectory. In the fissure of sub-micron, most of electrons emitted from the area of the cathode edge flow into the coplanar anode, while some electrons are emitted into the display surface by the current ratio of $10^{-3}$. The later electrons are forced to fly into the display surface by the centrifugal force due to the curved electric field between top side surfaces near the fissure.

  • PDF

Electron Emission Mechanism in the Surface Conduction Electron Emitter Displays

  • Cho, Guang-Sup;Choi, Eun-Ha;Kim, Young-Guon;Kim, Dai-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.139-140
    • /
    • 2000
  • The origin of the display current in the surface conduction electron emitter displays has been verified in the calculation of the electron trajectory. Some electrons move directly toward the display surface as an anode current which is generated due to the inertial force of electron motion along the curved electric field lines with a small curvature near the fissure area..

  • PDF

Influence of the Conduction Properties on ZnO-Based Ceramic Varistor with $TiO_2$ Additives ($TiO_2$의 첨가가 ZnO계 세라믹 바리스타에 미치는 전기적인 영향)

  • Lee, S.S.;Jang, K.U.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.234-238
    • /
    • 1987
  • In this paper, the used specimen composition was added basic additives ($Bi_2O_3\;lmol%$, $Sb_2O_3\;lmol%$, CoO 0.5 mol%, MnO 0.5mol%) to ZnO powder, and $TiO_2$ (1,2,3,4 mol%) to the above basic composition. It appears that there are four regions of conduction current depended upon the strength of the applied electric field ; Ohimic region, Poole-Frenkel region, Schottky region and Tunneling region. Increasing of $TiO_2mol%$, the breakdown voltages of ZnO ceramic varistors are decreased. The decrease of breakdown voltages was explained with the decrease of potential barrier height. Moreover, V-I characteristics with temperature dependence are decreased with increasing of $TiO_2mol%$.

  • PDF

The crystallinity and electrical characteristics of low density polyetylene thin film (저밀도 폴리에틸렌 필림의 결정화도 및 전기적 특성)

  • 윤중락;권정열;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.164-168
    • /
    • 1996
  • The relation between crystallinity and thermal history in low density polyethylene thin films and their effect on electric conduction phenomena and dielectric breakdown was studied. The low density polythylene thin films obtained by the solution growth method heat-treated at 140[$^{\circ}C$] for 2 h and subsequently cooling to various ways. The degree of crystallinity was estimated by the X-ray diffraction measurement for the specimen of slowly cooling, ICE quenching and liquid nitrogen quenching. The result shows that the crystallinity decreases become faster as the cooling speed increased, and that conduction phenomenon is governed by the space charge limited current in high field. It was found that the dielectric breakdown field increases with an increase in cooling speed and test number in self-healing breakdown method.

  • PDF