• Title/Summary/Keyword: Electric Brake

Search Result 165, Processing Time 0.029 seconds

Analytical study to the Brake Lever in Basic Brake System for Railway Vehicle (철도차량용 기초제동장치의 제동레버 강도에 대한 해석적 연구)

  • Park, Su-Myung;Park, Jae-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.624-629
    • /
    • 2016
  • A brake lever in a basic railway brake system is an important safety device that delivers braking force from the brake cylinder to the brake pad. The safety guidelines for designing rolling stock only qualitatively describe that the brake lever should have sufficient strength. Each train has a different type of brake lever. One brake lever that was designed with a factor of safety of 1.27 has failed, so the material was changed to increase the strength. Therefore, the stress distribution and weak points of the lever were identified by theoretical analysis. and structural analysis. Different brake lever designs were examined for KTX high-speed trains, which have a split-type structure, as well as for electric locomotives, which use an electric multiple unit (EMU) with a unity-type structure. A fracture test was also done to look at the relationship between the vertical stress and the bending stress during braking. The results were used to find a safety factor to apply to each train and suggest quantitative minimum guidelines. We also looked at changing the unity-type EMU brake lever to the split type under the same conditions and analyzed how much the design change affected the factor of safety.

The Functional Analysis of Blending Brake Control for Stanrard EMU (표준전동차 혼합제동 기능분석 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.466-467
    • /
    • 2008
  • There are many new technologies for EMU to secure the facilities' safety/validity and maintenance/economical efficiency and technologic competitiveness. For example, now the EMU is using the blending brake technology with electric brake and pneumatic brake and carrying the various performances such as jerk limitation, variable load and blending brake to stop the motor car safely and efficiently. The blending brake takes important parts in braking the cars and It is used in many fields of urban transit. There were many limitations to carry the performances and certificate whether the performances are acceptable in the system or not, because at that time they didn't take the whole prelieminarly inspection. Now we start applying such new methods, taking the whole inspection prior to the installation by analyzing systems requirements and introducing various system engineering design tools. In this paper, we suggest how to reduce the errors by prelieminarly inspection for the brake facilities using the tools and inspect the needs to analyze the brake facilities' performances.

  • PDF

Analysis on the Fire Accident of Vehicle Due to Damage of Connector and wiring on an Anti-lock Brake System(ABS) Module (ABS 모듈의 접속부 및 전원배선 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Park, Jong-Taek;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.13-19
    • /
    • 2017
  • In this paper, study of vehicle fire cases caused by connector and power wiring of anti-lock brake system(ABS) module damage is presented. The purpose of ABS module is to improve braking and steering ability under sudden stop of the vehicle by repeatedly activating and releasing the brake with electric signal via electric control unit. The electric control unit for ABS may experience incomplete contact between power line and signal line or electrical breakdown on the printed circuit board by undergoing repetitive signal change which would consequently result in electrical heat and spark, eventually leading to automotive fire. Therefore, the purpose of this paper is to provide fundamental data by analyzing connector and power wiring of ABS module damage conducive to the precise investigation on the cause of vehicle fire.

The Functional Analysis for Brake Operating Unit of EMU (전동차 제동장치 기능분석 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.211-212
    • /
    • 2008
  • There are many new technologies for EMU to secure the facilities' safety/validity and maintenance/economical efficiency and technologic competitiveness. For example, now the EMU is using the blending brake technology with electric brake and pneumatic brake and carrying the various performances such as jerk limitation, variable load and blending brake to stop the motor car safely and efficiently. Now we start applying such new methods, taking the whole inspection prior to the installation by analyzing systems' requirements and introducing various system engineering design tools. In this paper, we suggest how to reduce the errors by prelieminarly inspection for the brake facilities using the tools and inspect the needs to analyze the brake facilities' performances.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Development of A Hybrid Type Electronic Brake System(EBS)

  • Lim, Chulki;Boo, Kwangsuck;Song, Jeonghoon;Hong, Soonyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.1-115
    • /
    • 2002
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes the problems of the conventional hydraulic brake system. The HEBS uses the contactless brake system when vehicle speed is high to obtain superior braking force by eddy current, which is induced in pole area by magnetic flux through a rotating conductive disk. On the contrary, when a vehicle speed is low, contact type brake system such as conventional hydraulic brake system makes higher braking force. HEBS transfers faster a braking intention of drivers and guarantees a safety of drivers because of vehicle dynamic superior controllability. Braking torque analysis is peformed based upon Lee. Barn\ulcornermath...

  • PDF

Conceptual Design of Braking System in High-Speed Train (고속전철 제동장천 개념설계에 관한 연구)

  • Kang, Do-Hyun;Kim, Yong-Joo;Kwak, Soo-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.342-345
    • /
    • 1997
  • To achieve adequate brake performance in high-speed trains the brake system should : ${\bullet}$ offer high reliability and high availability, ${\bullet}$ permit deceleration of the train with as little wear as possible, and ${\bullet}$ display good control characteristics with, if possible, infinitely variable control of the braking effort. For these reasons, high-speed train is to be equipped with three different and largely independent brake system : ${\bullet}$ a regenerative brake with regenerative feedback in the driven cars, ${\bullet}$ a linear eddy-current brake in the nondriven cars and ${\bullet}$ a pneumatic disc brake in all cars. This paper describes the conceptual design of braking system for Korea High Speed Train with the maximum speed of 350km/h

  • PDF

Machining Characteristics of Wire EDM Using ER Brake System (ER 제동장치를 적용한 와이어 컷 방전의 가공 특성)

  • 김기선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.171-178
    • /
    • 2004
  • This paper presents vibration characteristics of a wire cut discharge machine in which an electro-rheological brake actuator is used to control the wire tension. The ER brake actuator has several advantages including design simplicity, fast response time and real-time controllability. On the basis of the tension level required in the machine an appropriate size of the ER brake actuator is devised. The ER brake actuator is then incorporated with the machine and the field-dependent wire tension is experimentally evaluated. The straightness of the workpiece is also empirically investigated by changing the intensity of the electric field.

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

A Study on Development of Brake System of Light Eco-Friendly Car Considering Heat Load and Regenerative Braking Characteristic (열부하 및 회생 제동 특성을 고려한 경형 친환경차의 제동시스템 개발에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Hwang, S.R.;Yim, W.S.;Kim, B.C.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Recently, there is a big issue of downsizing on brake system according to fuel efficiency and regenerative braking cooperation control. Especially, small cars have improved in a variety ways such as electric vehicle and smart car compared to previous small cars. So, small brake system is strongly required in the car industry. A new small brake system for light compact vehicles was proposed in this paper. For this system, the solid type disc and caliper were newly developed. And the important design factors were considered to reduce brake size. First, we calculated the temperature rise of disc through heat capacity formula and CAE analysis. Second, we analyzed the housing and carrier stiffness of caliper to select the reasonable condition. Finally, the superiorities of the developed brake system were verified by heat capacity, consumption liquid level, braking feeling, judder, wear test and regenerative braking cooperation control analysis. A developed brake system is expected to be useful for brake system of light compact platform.