• 제목/요약/키워드: Elderly welfare vulnerable district

검색결과 1건 처리시간 0.016초

인공지능과 국토정보를 활용한 노인복지 취약지구 추출방법에 관한 연구 (A Study on the Methodology of Extracting the vulnerable districts of the Aged Welfare Using Artificial Intelligence and Geospatial Information)

  • 박지만;조두영;이상선;이민섭;남한식;양혜림
    • 지적과 국토정보
    • /
    • 제48권1호
    • /
    • pp.169-186
    • /
    • 2018
  • 급속한 고령화 사회에서 노인인구가 갖는 사회적 영향력은 더욱 가속화될 것이다. 본 연구에서는 인공지능 방법론 중 머신러닝, 인공신경망, 국토정보 분석을 통해 노인복지 취약지구를 추출하는 방법론을 정립하는데 목적을 두었다. 분석방향 정립을 위해 65세 이상 노인, 공무원, 노인복지 시설물 담당자와 인터뷰 후 방향을 설정하였다. 경기도 용인시를 대상으로 500 m 공간단위 벡터 기반 격자에 15분 이내 지리적 거리 수용력, 노인복지 향유도, 공시지가, 이동통신 기반 노인활동을 지표로 설정하였다. 10단계 군집형성 후 모의학습 결과 RBF 커널 알고리즘을 활용한 머신러닝 서포트 벡터머신에서 83.2%의 예측정확도가 나타났다. 그리고 역전파 알고리즘을 활용한 인공신경망에서 높은 상관성 결과(0.63)가 나타났다. 변수간 공간적 자기상관성을 분석하기 위해 지리적 가중회귀분석을 수행했다. 분석결과 결정계수가 70.1%로 모형으로 나타나 설명력이 우수한 것으로 나타났다. 변수의 공간적 이상값 여부와 분포패턴을 검토하기 위해 국지적인 공간적 자기상관성 지수인 Moran's I 계수와 Getis-Ord Gi 계수를 분석하였다. 분석결과 용인시 신도시인 수지 기흥구에서 노인복지 취약지구가 발생하는 특성을 보였다. 본 연구의 인공지능 모의방법과 국토정보 분석의 연계는 최근 정부의 지역여건을 고려한 노인복지 불균형을 해결하는데 활용될 수 있을 것이다.