• Title/Summary/Keyword: Elderly welfare vulnerable district

Search Result 1, Processing Time 0.025 seconds

A Study on the Methodology of Extracting the vulnerable districts of the Aged Welfare Using Artificial Intelligence and Geospatial Information (인공지능과 국토정보를 활용한 노인복지 취약지구 추출방법에 관한 연구)

  • Park, Jiman;Cho, Duyeong;Lee, Sangseon;Lee, Minseob;Nam, Hansik;Yang, Hyerim
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.169-186
    • /
    • 2018
  • The social influence of the elderly population will accelerate in a rapidly aging society. The purpose of this study is to establish a methodology for extracting vulnerable districts of the welfare of the aged through machine learning(ML), artificial neural network(ANN) and geospatial analysis. In order to establish the direction of analysis, this progressed after an interview with volunteers who over 65-year old people, public officer and the manager of the aged welfare facility. The indicators are the geographic distance capacity, elderly welfare enjoyment, officially assessed land price and mobile communication based on old people activities where 500 m vector areal unit within 15 minutes in Yongin-city, Gyeonggi-do. As a result, the prediction accuracy of 83.2% in the support vector machine(SVM) of ML using the RBF kernel algorithm was obtained in simulation. Furthermore, the correlation result(0.63) was derived from ANN using backpropagation algorithm. A geographically weighted regression(GWR) was also performed to analyze spatial autocorrelation within variables. As a result of this analysis, the coefficient of determination was 70.1%, which showed good explanatory power. Moran's I and Getis-Ord Gi coefficients are analyzed to investigate spatially outlier as well as distribution patterns. This study can be used to solve the welfare imbalance of the aged considering the local conditions of the government recently.