• Title/Summary/Keyword: Elbow joint angle

Search Result 89, Processing Time 0.019 seconds

Kinematical Analysis of Angle and Angular Velocity of the Body Segment on Spike in Volleyball (배구 스파이크시 신체분절의 각도와 각속도에 대한 운동학적 분석)

  • Cho, Phil-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.191-199
    • /
    • 2007
  • This study was conducted to examine the biomechanical characteristics of open spike in the volleyball to improve the technique of the volleyball spike. The subjects were six male college and high school athletes. The motions of volleyball spike were filmed by using two Sony VX 2000 Video Cameras. The mechanical factors were angle and angular velocity of body segments in the upper and the lower limbs. The conclusions were as follows; 1. The angle of the shoulder joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 2. The angle of the elbow joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 3. The angle of the wrist joint of the skilled showed smaller than that of the unskilled in impacting of the volley ball spike. 4. The angle of the hip joint of skilled showed larger than that of unskilled in impacting of the volley ball spike. 5. The angle of the knee joint of the skilled and the unskilled showed same in take off and impacting of the volley ball spike, and that of the skilled showed smaller than that of the unskilled in take-off touchdown and touchdown after impact of the volley ball spike. 6. The angle of the ankle joint of skilled showed larger than unskilled in take-off of the volley ball spike. 7. The angular velocity of the shoulder joint, elbow joint, wrist joint of the skilled showed faster than that of the unskilled in impacting of the volley ball spike. Taken together the result of them, I have come to conclusion that knee joint angle in touchdown of the take off should be decreased and knee joint angle in take off should be increased, and then stability of the take off should be made and, and that extension of the elbow joint should be made and wrist joint angle decreased and shoulder and hip joint angle increased, and then C.O.G of the arm and hand should be positioned ahead C.O.G of the body in impacting for effective impact of the spike, and that the transfer of the angular velocity of body segments for effective impact of the spike make from the proximal segment to the distal segment at spike in volleyball.

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

Optimization-based Real-time Human Elbow Joint Angle Extraction Method (최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

Difference of Proprioceptive Sense at Elbow Joint According to Measurement Methods (팔굽관절에서 측정방법에 따른 고유수용성감각 차이)

  • Lee, Jung-Ah;Kim, Duk-Hwa;Shin, Hwa-Kyung;Choi, Kyu-Hwan;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.63-70
    • /
    • 2003
  • The purpose of this study was to compare the difference of joint position sense between measurements. Fourteen healthy male subjects were recruited for this study. The elbow joint position senses were measured using angle reproduction test. The elbow joint position sense was assessed with three experimental conditions: ipsilateral reproduction test in open-chain condition, contralateral reproduction test in open-chain condition, ipsilateral reproduction test with weight in open-chain condition and ipsilateral reproduction test in closed-chain condition. The angular difference between stimulus position and the reproduced position (angular error) was calculated in all testing conditions to examine the accuracy of the joint position sense. One way ANOVA was used to compare the error angles in all experimental conditions. The error angles between measurements were significantly different in elbow joint. The error angles was smallest in ipsilateral reproduction test with weight in open-chain condition and was greatest in the contralateral reproduction test in open-chain condition. Findings of this study indicate that testing methods, types of task, existence of resistance should be considered in clinical assessment for the joint position sense.

  • PDF

Evaluation and Verification of Optimal Electrode Configurations for Detection of Arm Movement Using Bio-Impedance (생체임피던스에 의한 상지운동 감지를 위한 최적 전극 위치의 평가 및 검증)

  • Ahn, Seon-Hui;Kim, Soo-Chan;Nam, Ki-Chang;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.399-402
    • /
    • 2002
  • In this study, we constructed a four-channel impedance measurement system including a two-channel goniometer to analyze human arm movement. Impedances and joint angles were simultaneously measured for wrist and elbow movements. As the impedance changes resulting from wrist and elbow movements depended heavily on electrode placement, we determined the optimal electrode configurations for those movements by searching for high correlation coefficients, large impedance changes, and minimum interferences in ten subjects (age: 29+6). Our optimal electrode configurations showed very strong relationships between the wrist joint angle and forearm impedance (correlation coefficient = 0.95+0.04), and between the elbow joint angle and upper arm impedance (correlation coefficient = -0.98+0.02). Although the measured impedances changes of the wrist (1.1+1.5 ohm) and elbow (-5.0+2.9 ohm) varied among individuals, the reproducibilities of wrist and elbow impedance changes of five subjects were 5.8+1.8 % and 4.6+1.4 % for the optimal electrode pairs, respectively. We propose that this optimal electrode configuration would be useful for future studies involving the measurement of accurate arm movements by impedance method.

  • PDF

Surface EMG Verification according to the Electrode Location in Biceps Brachii during Arm Curl Isometric Exercise (암컬 등척성 운동 시 상완이두근에서의 EMG 전극 위치에 따른 근 활성 검증)

  • Park, Hyo Eun;Hong, Ah Reum;So, Jae Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.103-109
    • /
    • 2020
  • Objective: The purpose of this study is to compare the muscle activity by electrode location in the biceps brachii during the arm curl isometric exercise and to provide the basic data needed to develop the proper electrode location of the biceps brachii based on the study results comparing the muscle activity by the angle of the elbow joint. Method: 17 adult males (Age: 21.50±4.63 yrs, height: 175.29±5.97 cm, weight: 63.79±15.31 kg, upper-arm length: 30.10±1.22 cm) participated in the study. In the arm curls isometric exercise, the experiment was divided into 1st and 2nd steps to compare muscle activity according to electrode location in the biceps brachii and muscle activity according to elbow angle change. In the first experiment, the surface electrode was attached at one-third point on the line from medial acromion to cubital fossa, according to the measurement method indicated by SENIAM. The elbow angle was set to 90°. In the second experiment, according to the proposed method of this study, the electrodes were separated at one finger's width in the left and right direction at one-third point on the line from medial acromion to cubital fossa, attached at the long head and short head. From the long head electrode, in about a width of two fingers in proximal direction, a total of three electrodes were attached at the myotendinal junction of the long head. The elbow angles were set as 70°, 90°, and 110°, and the isometric exercise (100% MVC) for 5 seconds was maintained with keeping the forearm and the rope to be 90° for the first and second experiments. Results: During the arm curl isometric exercise, there was no significant difference in SH and SENIAM proposition location proposed by this researcher. LH was shown to be lower than the muscle activity of the location proposed by SENIAM and there were significant (p<.01) differences. MJ appeared lower than the muscle activity of the location proposed by SENIAM and there were significant (p<.001) differences. The muscle activity by the elbow joint angle of SH in the biceps brachii was shown in large order of 70°<90°<110°, but there was no significant difference. The muscle activity by the elbow joint angle of LH was shown in large order of 90°<70°<110°, but there was no significant difference. The muscle activity by the elbow joint angle of MJ was shown in large order of 110°<90°<70°, but there was no significant difference. Conclusion: During the arm curl isometric exercise of the biceps brachii, it is judged appropriate to attach surface electrodes to the location proposed by SENIAM.

Learning a Single Joint Perception-Action Coupling: A Pilot Study

  • Ryu, Young-Uk
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • Purpose: This study examined the influence of visuomotor congruency on learning a relative phase relationship between a single joint movement and an external signal. Methods: Participants (N=5) were required to rhythmically coordinate elbow flexion-extension movements with a continuous sinusoidal wave (0.375 Hz) at a $90^{\circ}$ relative phase relationship. The congruent group was provided online feedback in which the elbow angle decreased (corresponding to elbow flexion) as the angle trajectory was movingup, and vice versa. The incongruent group was provided online feedback in which the elbow angle decreased as the angle trajectory was moving down, and vice versa. There were two practice sessions (day 1 and 2) and each session consisted of 6 trials per block (5 blocks per session). Retention tests were performed 24 hours after session 2, and only the external sinusoidal wave was provided. Repeated ANOVAs were used for statistical analysis. Results: During practice, the congruent group was significantly less variable than the incongruent group. Phase variability in the incongruent group did not significantly change across blocks, while variability decreased significantly in the congruent group. In retention, the congruent group produced the required $90^{\circ}$ relative phase pattern with significantly less phase variability than the incongruent group. Conclusions: Congruent visual feedback facilitates learning. Moreover, the deprivation of online feedback does not affect the congruent group but does affect the incongruent group in retention.

Effect of flexion degrees in elbow joint on muscle activation of the extensor carpi radialis and biceps brachii muscles in healthy young adults

  • Kim, Gap-Cheol;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • Objective: Chronic lateral epicondylitis is a condition which becomes sore and tender on the lateral side of the elbow joint damaged from overuse and repetitive use of the extensor muscles of the forearm. The purpose of this study was to investigate the effects of flexion degrees in the elbow joint on extensor carpi radialis longus and brevis and biceps brachii muscles in individuals with healthy young adults. The main purpose of this study was to suggest the feasibility of optimal elbow angle during therapeutic eccentric exercise with resistance for strengthening of wrist extensors. Design: Cross-sectional study. Methods: Thirty health young adults (male 15, female 15) participated in this study. This study measured muscle activation in four different conditions of elbow flexion, $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$ during eccentric exercise with weight loading in wrist extensors, extensor carpi radialis longus and brevis and biceps brachii muscles using surface electromyography. Results: The muscle activation of extensor carpi radialis showed a negative relationship with the degrees of elbow joint flexion. With increasing elbow flexion angles, the ECRL muscle activation amount was significantly lower (p<0.05). In contrast, the muscle activation of the ECRB muscle activation amount was significanlty higher (p<0.05). Conclusions: This study suggests that the eccentric exercise of wrist extension with selected activation of wrist extensor muscles according to elbow flexion positions, and suggests that the extensor carpi radialis longus and brevis will need to be strengthened for preventing and treating chronic lateral epicondylitis regardless of degrees of elbow joint flexion.

The Effect on Grip and Pinch Strength with Elbow and Wrist Angle (팔꿉관절과 손목관절 각도가 쥐는 힘과 집는 힘에 미치는 영향)

  • Lee, Hyun-Ju;Yi, Seung-Ju
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.312-318
    • /
    • 2003
  • The purpose of this study were to determine the effect on grip and pinch strength with elbow and wrist angle change. 112 college students, 88 males, and 24 females aged 19 to 34 years, participated in the study. A Grip and pinch strength was measured in two elbow position($0^{\circ}$ and $90^{\circ}$) and three wrist position($80^{\circ},\;0^{\circ},\;23^{\circ}$). The data were analyzed by mean and deviation, and t-test using the PC/SAS system. These results were obtained as follows; 1. There was a more strength grip and pinch power in $0^{\circ}$ than $90^{\circ}$ elbow flexion at three wrist angle. 2. There was a significant high grip and pinch strength in $23^{\circ}$ dorsiflexion among three wrist angle(p<0.01). 3. The grip and pinch strength power was measured higher in male than female every elbow and wrist angle(p<0.01).

  • PDF

Effects of Viewing Angle on the Estimation of Joint Angles in the 2-dimensional Plane (2차원 면에서의 자세 관측시 시야각이 관절각 추정에 미치는 영향)

  • Lee, In-Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.51-62
    • /
    • 2006
  • In assessing risks related to working posture, pictures of postures are taken from various directions, which can be a source of observation error. Joint postures of the neck, lower back, knee, shoulder, and elbow were taken from 7 different viewing angles and 19 observers estimated joint angles by observing the pictures in 2-dimensional display. The joint angles were also measured using an optoelectronic motion measurement system. The estimation error increased as the viewing angle varies from the right side of the human body, but the patterns differ according to which joint angles were being observed. Guidelines to increase the validity of observation of joint angles were presented based on the results. In general, it is recommended to maintain the viewing angle within 20 degrees from the right side of the human body, while different ranges of viewing angle are recommended for each joint angle.