• 제목/요약/키워드: Elastoplastic contact

검색결과 15건 처리시간 0.028초

탄소성접촉면의 나노스케일 열접촉저항 (Thermal contact resistance on elastoplastic nanosized contact spots)

  • 이상영;조현;장용훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

탄소성/접촉 해석을 위한 Co-rotational 정식화 기반의 9절점 평면 요소 개발 (Development of Nine-node Co-rotational Planar Element for Elastoplastic/Contact Analysis)

  • 조해성;주현식;신상준
    • 한국전산구조공학회논문집
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 본 논문에서는 비교적 최근 정립된 co-rotational 이론을 기반으로 한 4절점 평면요소 정식화를 확장하여 9절점 평면 요소에 적합한 CR 정식화를 제시하고자 한다. 그리고 등방성 재료의 소성 해석을 위해, 선형 경과 규칙(bi-linear hardening rule)을 바탕으로 하는 Newton-Raphson return-mapping 알고리즘을 적용하였다. 이때, von Mises 기준을 적용하여 소성 변형 상태를 예측하였다. Lagrange 승수를 도입하여 2차원 접촉에 대한 구속조건을 부여하였다. 개발한 요소는 상용프로그램인 ABAQUS 해석결과와 비교 검증하였다.

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

접촉감쇠의 수식화 및 외연적 유한요소법에의 적용 (Formulation of the Contact Damping and its Application to the Explicit Finite Element Method)

  • 이상욱;양동열;정완진
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.306-312
    • /
    • 1999
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastoplastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur, which sometimes partly spoil results of simulations. This phenomenon becomes severer when complicate contact conditions are included in simulations. In commercial dynamic codes, the concept of contact damping is introduced. However, the formulation process of it is not revealed well. In this paper, a contact damping method is formulated in order for effectively suppressing noises occurring due to complicated contact conditions. This is checked by analyzing a simple sheet metal stamping process (U-draw bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts, especially when considering the sheet thickness, and help to develop more reliable internal stress states, which result in more realistic shapes after springbank.

  • PDF

미끄러짐 마찰 접촉하는 시스템에서의 열탄소성 불안정성 연구 (Frictionally Excited Thermoelastoplastic instability in sliding contact system)

  • 안성호;장용훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.144-149
    • /
    • 2008
  • A transient finite element simulation is developed for the two-dimensional stationary elastoplastic layer between sliding layers, to investigate thermoelastoplastic instability(TEPI) due to frictional heating in the material. The analysis will show some differences between the case of thermoelastic instability and TEPI, especially according to the contact pressure above yield stress. A transient behavior of contact pressure is captured to explain the behavior of thermoplasticity of contact with different sliding velocity. The instability of contact pressure in the long range of braking time will be explored to understand the generation mechanism of hot spots.

  • PDF

암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구 (A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens)

  • 정교철
    • 지질공학
    • /
    • 제8권3호
    • /
    • pp.215-224
    • /
    • 1998
  • LVDT에 의해 전체변형율이 측정되었고, 국부적 변형율은 변형율게이지에 의해 측정되었다. 또한 공시체에서의 응력 분포를 알기 위하여 유한요소법에 의한 축대칭 탄소성 해석을 하였다. 단면구속영향을 고려하면 H/D=1인 경우에 특히 구속영향을 크게 받는다. 또한 공시체 직경에 대한 공시체 길이가 길어질수록 영향을 적게 받는다는 것을 알 수 있다. 공시체와 재하판과의 접촉면에서 응력 및 변위 분포는 접촉하고 있는 두 재료의 탄성계수비와 접촉면의 마찰저항에 크게 좌우된다. 즉 암석공시체에 대한 재하판의 영향은 경암에서보다 연암에서 더 현저하다 또한 단면구속이 변형율 분포에 미치는 영향 및 치수효과는 강성이 큰 암석에서 현저하게 나타난다.

  • PDF

Efficient Meshfree Analysis Using Stabilized Conforming Nodal Integration for Metal Forming Simulation

  • Han, Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권7호
    • /
    • pp.943-950
    • /
    • 2010
  • An efficient meshfree method based on a stabilized conforming nodal integration method is developed for elastoplastic contact analysis of metal forming processes. In this approach, strain smoothing stabilization is introduced to eliminate spatial instability in Galerkin meshfree methods when the weak form is integrated by a nodal integration. The gradient matrix associated with strain smoothing satisfies the integration constraint for linear exactness in the Galerkin approximation. Strain smoothing formulation and numerical procedures for path-dependent problems are introduced. Applications of metal forming analysis are presented, from which the computational efficiency has been improved significantly without loss of accuracy.

변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가 (Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity)

  • 박문식;강경모;한덕수
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Seismic analysis of CFST frames considering the effect of the floor slab

  • Huang, Yuan;Yi, Weijian;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.397-408
    • /
    • 2012
  • This paper describes the refined 3-D finite element (FE) modeling of composite frames composed of concrete-filled steel tubular (CFST) columns and steel-concrete composite beams based on the test to get a better understanding of the seismic behavior of the steel-concrete composite frames. A number of material nonlinearities and contact nonlinearities, as well as geometry nonlinearities, were taken into account. The elastoplastic behavior, as well as fracture and post-fracture behavior, of the FE models were in good agreement with those of the specimens. Besides, the beam and panel zone deformation of the analysis models fitted well with the corresponding deformation of the specimens. Parametric studies were conducted based on the refined finite elememt (FE) model. The analyzed parameters include slab width, slab thickness, shear connection degree and axial force ratio. The influences of these parameters, together with the presence of transverse beam, on the seismic behavior of the composite frame were studied. And some advices for the corresponding seismic design provisions of composite structures were proposed.