• Title/Summary/Keyword: Elastomeric bearings

Search Result 68, Processing Time 0.022 seconds

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(1): Natural Rubber (가속열 노화로 열화된 탄성받침 고무재료의 전단 특성(1): 천연고무)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.95-102
    • /
    • 2021
  • Elastometic bearings using flexible rubber materials have recently been widely applied for seismic retrofit of bridges. However, due to various factors, the aging of the rubber material progresses, which causes the shear stiffness change of the bearing, which affects the seismic performance of the bridge. For natural rubber, accelerated heat aging test was performed with variables of heating temperatures and exposure time to analyze shear characteristics. As aging progresses (i.e. increase of temperature and exposure time), the maximum shear stress and shear strain decrease. Also, the shear stiffness is greatly increased at the same shear strain. This means that the rubber material is hardened, implying that the seismic performance of the elastomeric bearing becomes poor.

A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test (유한요소 해석과 모형실험을 통한 교량받침의 거동특성 연구)

  • Lee, Jae-Uk;Jung, Hie-Young;Oh, Ju;Park, Jin-Young;Kim, See-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.96-106
    • /
    • 2014
  • The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration.

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

Dynamic response of middle slab in double-deck tunnel due to vehicle load (차량하중에 의한 복층터널 중간슬래브의 동적 응답)

  • Kim, Hyo-Beom;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.717-732
    • /
    • 2017
  • Recently, the construction of underground structure such as a double-deck tunnel is increasing to manage rapid growth of roadway traffic volume. Double-deck tunnel includes middle slab to separate upper and lower road inside, and various sources affect the dynamic behaviour of middle slab due to dynamic loading of vehicle. Therefore, it is important to investigate the dynamic response of middle slab precisely to apply it to design and analysis of double-deck tunnel. In this study, dynamic analysis model of middle slab considering structural type, design velocity, vehicle load, and surface roughness, etc. is built. 3-dimensional dynamic analysis is performed to assess dynamic response of middle slab. Consequently, Dynamic Magnification Factor which represents dynamic response of middle slab shows maximum in case of elastomeric bearings (EB) and average roughness (Grade C). It is also expected that dynamic response can be reduced under the condition of good roughness (Grade B) and fixed bearings (FB).

Investigation of Adaptability of Smart Top-Story Isolation System to Structures in Regions of Low-to-Moderate Seismicity (스마트 최상층 면진시스템의 중약진지역 적용성 평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.71-80
    • /
    • 2012
  • Because a smart isolation system cannot be used as a base isolation system for tall buildings, top-story or mid-story isolation systems are required. In this study, adaptability of a smart top-story isolation system for reduction of seismic responses of tall buildings in regions of low-to-moderate seismicity has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions in comparison with a passive top-story isolation system.

Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges

  • Ghosh, Jayadipta;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.649-673
    • /
    • 2012
  • Recent studies have highlighted the importance of accounting for aging and deterioration of bridges when estimating their seismic vulnerability. Effects of structural degradation of multiple bridge components, variations in bridge geometry, and comparison of different environmental exposure conditions have traditionally been ignored in the development of seismic fragility curves for aging concrete highway bridges. This study focuses on the degradation of multiple bridge components of a geometrically varying bridge class, as opposed to a single bridge sample, to arrive at time-dependent seismic bridge fragility curves. The effects of different exposure conditions are also explored to assess the impact of severity of the environment on bridge seismic vulnerability. The proposed methodology is demonstrated on a representative class of aging multi-span reinforced concrete girder bridges typical of the Central and Southeastern United States. The results reveal the importance of considering multiple deterioration mechanisms, including the significance of degrading elastomeric bearings along with the corroding reinforced concrete columns, in fragility modeling of aging bridge classes. Additionally, assessment of the relative severity of exposure to marine atmospheric, marine sea-splash and deicing salts, and shows 5%, 9% and 44% reduction, respectively, in the median value bridge fragility for the complete damage state relative to the as-built pristine structure.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Modal identification and model updating of a reinforced concrete bridge

  • El-Borgi, S.;Choura, S.;Ventura, C.;Baccouch, M.;Cherif, F.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2005
  • This paper summarizes the application of a rational methodology for the structural assessment of older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the bridge, identification of the structure's modal signature and finite element model updating. The selected case study is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient vibration tests were conducted on the bridge using a data acquisition system with nine force-balance accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model updating part of the study, the parameters selected for the updating process include the concrete modulus of elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model updating to provide data that could be used to assess the structural condition of the selected bridge. The application of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.