• Title/Summary/Keyword: Elastomeric bearing

Search Result 69, Processing Time 0.026 seconds

A Study on the Shape Design and Nonlinear Analysis of Elastomeric Spherical Bearings for Railway Bridge Systems (철도교용 반구면 탄성체 베어링의 형상설계 및 해석에 관한 연구)

  • Oh, Ju;Cho, Hyun-Jin;Lee, Wan-Ha;Park, Jin-Young;Park, Kun-Nock
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.589-592
    • /
    • 2009
  • In this paper is presenting the shape design and elastomer bearings, which functioned as a joint connecting sub-structures and upper-structures with a railway bridge bearing systems. The elastomeric spherical bearing shaped and composed of alternated 17-layered metal shim plates and 18-layered elastomer plates, respectively. The elastomeric spherical bearing a high compressive load for perpendicular axis to layered plates and flexible motions are provided coincidently for other axes. The three types of elastomers, which were developed due to a designed shear modules were applied. Nonlinear analysis based on the material properties of designed bearing were accomplished. Therefore, the Nonlinear Analysis results were compared with the calculation results and the optimized shapes were designed.

  • PDF

Determination of bearing type effect on elastomeric bearing selection with SREI-CAD

  • Atmaca, Barbaros;Ates, Sevket
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.43-56
    • /
    • 2017
  • The aim of this paper is to develop software for designing of steel reinforced elastomeric isolator (SREI) according to American Association for State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) Specifications. SREI is used for almost all bridge types and special structures. SREI-structures interface defines support boundary conditions and may affect the seismic performance of bridges. Seismic performance of the bridge is also affected by geometrical and materials properties of SREI. The selection of SREI is complicated process includes satisfying all the design constraints arising from code provisions and maximizing performance at the lowest possible cost. In this paper, design stage of SREI is described up to AASHTO LRFD 2012. Up to AASHTO LRFD 2012 analysis and design program of SREI performed different geometrical and material properties are created with C# object-oriented language. SREI-CAD, name of the created software, allows an accurate design for economical estimation of a SREI in a short time. To determine types of SREI effects, two different types of bearings, rectangular and circular with similar materials and dimension properties are selected as an application. Designs of these SREIs are completed with SREI-CAD. It is seen that ensuring the stability of circular elastomer bearing at the service limit state is generally complicated than rectangular bearing.

An Experimental Study for Material Properties of Elastomer Bearing Using Next Genration Helicopter rotor system (차세대 헬리콥터 로터용 탄성체베어링 소재 특성에 관한 실험적 연구)

  • 정정교;김영석;박건록;김두훈;이명규;김덕관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • Nowadays many peoples are using helicopter in various fields, not only military use but also common people applications such as air-measurement, photography, transportation of goods and persons, saving life and fire fighting etc. And it will be expected more popular than now. Most important part of helicopter to increasing performance and to reducing noise is rotor hub-system. Hub system consists of rotor-blade and rotor-hub. We participate to develop next-generation rotor hub system with elastomeric bearing, part of rotor hub. In this paper we introduce about the role and shape of elastomeric bearing in next-generation helicopter hub system. Then we study about bearing-material requirements and measuring methods. Finally we represent some experimental results.

  • PDF

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.

Accelerated Heat Aging Test for Predicting Useful Lifetime of Elastomeric Rearing (가속 열 노화시험에 의한 탄성받침용 합성고무의 수명 예측에 관한 연구)

  • Park, K.H.;Park, J.H.;Lee, H.H.;Kwon, Y.I.
    • Journal of Applied Reliability
    • /
    • v.4 no.2
    • /
    • pp.73-90
    • /
    • 2004
  • We performed the heat aging test to predict the useful lifetime of Elastomeric Bearing Chloroprene Rubber (CR) used for supporting bridge. During the test, we measured elongation that are influenced by temperature and aging time. The failure of a test piece is defined as the point at which the elongation reaches to 75% of the initial value. This failure criterion is based on KS F 4420: 1998 (Elastomeric Bearing for bridge). Through the accelerated heat aging test, we found that the Arrhenius relationship and the Weibull lifetime distribution are appropriate as the life-temperature relationship and lifetime distribution of the CR, respectively. Using the Arrhenius -Weibull model, the parameters of the model are estimated and the lifetime of the CR at use condition is predicted.

  • PDF

Evaluation of Seismic Performance of Steel Frame before and after Application of Seismic Isolator (면진 장치 적용 전, 후의 철골조의 내진 성능 평가)

  • 김대곤;이상훈;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The laminated elastomeric bearing and the lead-rubber bearing were designed to isolate one bay-two story steel frame which is designed for only gravity load. The seismic performance is evaluated for the designed steel frame before and after application of these seismic isolators between the super structure and the foundation. These isolators can improve the seismic capacity of the steel frame. Especially, by inserting the lead plug into the center of the laminated elastomeric bearing, the initial stiffness of th bearing can be increased, thus rather large lateral displacement can be prevented under the frequent service lateral load. During the strong earthquake, yielding of the lead can increase the capacity of the energy dissipation.

  • PDF

A Ultimate Shear Performance of Elastomeric Bearings (탄성받침의 극한전단성능)

  • Yoon, Hye-Jin;Kwahk, Im-Jong;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The bridge bearings are devices absorbing the displacements of the superstructure. KS F 4420 relative to the design of elastomeric bearings in Korea allows shear deformation up to 70% of total rubber height. For the elastomeric bearings to fulfill their shear function required in the design, the stability of allowable shear strain of elastomeric bearings relative to the shear failure should be guaranteed. Moreover considering the possibility that elastomeric bearings are applied to the seismic design together with isolation devices, elastomeric bearings is supposed to display higher shear performance. In this paper ultimate shear performance tests were performed. The measured ultimate shear strains were over 200%. Therefore an allowable shear strain provision becomes safe. But elastomeric bearings expected to show their performance in one united body reveled the separation of components near 200% shear strain. These separation in elastomeric bearing can cause unexpected impact or concentrated stress to bridge system considering to application of seismic design. Therefore provision relevant to separation problem is necessary.

  • PDF

Seismic Performance Evaluation of Railway Bridges Using Spherical Elastomeric Bearing (스페리컬 탄성받침을 이용한 철도교량의 내진성능평가)

  • Oh, Ju;Lee, Jae-Uk;Kim, Hu-Seung;Kim, Jae-Wook;Park, Seong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1236-1241
    • /
    • 2011
  • Railway bridge is the most problematic thing in the railway is due to noise and vibration. To solve these problems, there have been studies. However, a fundamental alternative to the noise and vibration. It has not so far not shown, and to minimize the problem is focused. As a result, developed a lot of noise reduction measures, but the vibration is not much for reduction. In this study, to support the superstructure of the bridge vibration possible for spherical elastomeric bearing is a technical review. And it applies to the railway bridge, the numerical analysis was carried out.

  • PDF

Behaviour of laminated elastomeric bearings

  • Mori, A.;Moss, P.J.;Carr, A.J.;Cooke, N.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.451-469
    • /
    • 1997
  • Experimental work undertaken to investigate the behaviour of laminated elastomeric bridge bearings under compression and a combination of compression and shear or rotation has been reported on elsewhere. However, it is difficult to determine the state of stress within the bearings in terms of the applied forces or the interaction between the steel shims and the rubber layers in the bearings. In order to supply some of the missing information about the stress-strain state within the bearings, an analytical study using the finite element method was carried out. The available experimental results were used to validate the model after which the analyses were used to provide further information about the state of stress within the bearing.