• Title/Summary/Keyword: Elasto-plastic model

Search Result 354, Processing Time 0.022 seconds

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

A Study on Inelastic Behavior of an Asymmetric Tall Building (비대칭 초고층건물의 비탄성거동에 관한 연구)

  • 윤태호;김진구;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the inelastic behavior of an asymmetric tall building is investigated. The asymmetry in rigidity caused by the structural asymmetry induces torsional as well as lateral deformation. The inelastic analysis of such an asymmetric structure is difficult to carry out with a planar model and thus requires a full three dimensional model. In this paper a 102 story unsymmetric tall building is analized by static push-over procedure and its behavior is investigated. The analysis are performed with and without floor rotation to compare the results. According to the results the static behavior of the model building, as expected, turned out to be dependent heavily an the asymmetry of the plan shapes of the building.

  • PDF

Undrained Behaviour of Granular Soil Using Single Work-Hardening Model (단일항복면 구성모델에 의한 입상토의 비배수거동해석)

  • Jeong, Jin Seob;Kim, Chan Kee;Lee, Moon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 1992
  • This paper aims at developing a finite element program to predict undrained behavior of granular soil by using elasto-plastic constitutive model. A computer program developed by authors based on Christian's techniques for undrained behaviour of the soil has been employed coupled with Lade's single work-hardening model. Modification of the program for drained behaviour, considering restraint of volumetric strain, makes it possible to analize the underained behaviour. To validate the newly developed program, comparison of results was performed between numerical values and experimental data for Baekma river sand as well as Sacrmento river sand studied by Seed and Lee. The program is evaluated to have high accuracy.

  • PDF

Development of Simple Prediction Model for Fillet Welding Deformation (필릿 용접변형에 대한 간이 예측 모델 개발)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • The welding deformation of a hull structure in the shipbuilding industry is Inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurateprediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper is aimed at deriving the simple prediction model for fillet welding deformations. For this purpose, the thermal elasto-plastic analysis varying the welding conditions and plate thickness has been performed. On the basis of numerical results, the formulae for angular distortion and transverse shrinkage have been derived through the regression analysis. Experimental work has been also carried out to clarify the validity of numerical results. It has been found that the numerical results show a good agreement with those of experiments

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Elasto-Plastic Finite Element Analysis in Consideration of Phase Transformations (상변태를 고려한 탄소성 유한요소 해석)

  • Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.334-336
    • /
    • 2009
  • An elastic-plasticity model during the austenitic decomposition was derived and implemented to incorporate the two important deformation behaviors observed during the phase transformations: the volumetric strain and transformation induced plasticity due to the temperature change and phase transformation. To obtain transformed phase volume fractions during cooling, the fourth order Runge-Kutta method was used to solve the Kirkaldy's phase kinetics model which is function of temperature, austenitic grain size and chemical composition. The volumetric strain was calculated by considering the densities of constituent phases, while the transformation induced plasticity was based on the micro-plasticity due to the volume mismatch between soft austenitic phase and other harder phases. The constitutive equations were implemented into the implicit finite element software and a simple boundary value problem was chosen as a model problem to validate the effect of transformation plasticity on the deformation behavior of steel under cooling from high temperature. It was preliminary concluded that the transformation plasticity plays a critical role in relaxing the developed stress during forming and thus reducing the magnitude of springback.

  • PDF

Study on the Deformation Behavior by Spot Heating for thin plate (박판 점 곡직 시 변형 특성에 관한 연구)

  • Jang, Gyeong-Bok;Park, Jung-Gu;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.285-287
    • /
    • 2005
  • During fabrication of deck house block in passenger ships, the problem of unexpected large deformation and distortion frequently occurs. In this case, line and spot heating method were widely used to correct the distortion of thin plate structure. Spot heating was especially used for the case under 5mm thickness. Few papers are available on the working conditions of spot heating method but only little information on deformation control. In this study, evaluation was carried out on the temperature distribution of spot heating methods using FEA and practical experiments for various heating time. IIn FEA, heat input model was established using Tsuji's double Gaussian heat input mode (Tsuji, I., 1988). This model was verified by comparing with experimental data. Also radial shrinkage and angular distortion due to spot heating were determined and compared with experimental results. Thermo elasto-plastic analysis was performed using commercial FE code, MSC/MARC. Radial shrinkage and angular distortion were measured using 3D measuring apparatus. Based on these results, simplified analysis model for deformation by spot heating was established.

  • PDF

Development of Computational Model for Spot Welding and Effect Analysis on Welding Conditions (점용접의 해석 모델 개발 및 용접조건에 대한 영향도 분석)

  • Bang, Hyejin;Ju, Yonghyun;Choi, Junghoon;Shin, Hyunshik;Jung, Byungsung;Park, Kyujong;Lee, Sang-kyo;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.642-649
    • /
    • 2015
  • Resistance Spot Welding (RSW) is the method for joining two overlapped base materials when high pressure and current is applied from electrodes. Due to the safety problem such high pressure and voltage, automation should be early adopted. In this paper, the spot welding is developed as a computational model of wheel house from GM Korea and the welding condition such as weld sequence is considered. The computational analysis is preceded as a static and elasto-plastic procedure and used thermal expansion coefficient represents a dependency of spot volume between two panels. In case of welding sequence, the efficiency which depends on the distance between current spot point and the other is calculated in several cases.

Investigation of Spudcan Penetration Resistance in Layered Soil Deposits

  • Jan, Muhammad Asad;Nizamani, Zubair Ahmed;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A suite of 3D large deformation finite element (FE) analyses was performed to investigate the load transfer mechanism and penetration resistance of spudcan foundations in heterogeneous soil profile consisting of sand and clay. The Elasto-Plastic models following Mohr-Coulomb and Tresca failure criteria were adopted for sand and clay, respectively. The accuracy of the numerical model was validated against centrifuge test measurements. The dense sand behavior with dilation is modeled using the non-associated flow rule. An investigation study consisting of key parameters, which includes variation in soil stratigraphy (sand-clay, sand-clay-sand), strength parameters of sand and clay (��' and su) and normalized height ratio of the sand layer (Hs/D) was conducted to assess the penetration behavior of spudcan. Based on calculated outputs, it was demonstrated that these parameters have a significant influence on the penetration resistance of spudcan. The calculated penetration resistance profiles are compared with the published (sand overlying clay) analytical model. It is confirmed that for the case of two-layer soil, the available theoretical model provides an accurate estimate of peak penetration resistance (qpeak). In the case of three-layer soil, the presence of a third stiff layer affects the penetration resistance profile due to the squeezing of the soil.