• Title/Summary/Keyword: Elasto-Plastic Finite Element Method

Search Result 244, Processing Time 0.021 seconds

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Performance evaluation of high-performance lattice girder using numerical analysis (수치해석을 통한 고성능 격자지보재의 성능 평가)

  • Kim, Dong-Gyou;Ahn, Sungyoull
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.897-908
    • /
    • 2019
  • The objective of this study is to evaluate the field support performance of highperformance lattice girder (BK-Lattice Girder) by using numerical analysis. Three types (50, 70, 95-type) of existing and high performance lattice girders were applied to the cross section of highway 2, 3, and 4 lane tunnels to compare the supporting performance. The numerical analysis was the finite element method and the lattice girder was modeled in three dimensions with an elasto-plastic frame. The ground was modeled as a spring receiving only compression. The load was applied as a concentrated load on the central ceiling of the tunnel section. The yield strengths of the lattice girders were determined from the numerical results to compare the supporting performance of lattice girder. In case of 50-type, the yield strengths of high-performance lattice girders were increased by 6.7~10.0% compared with those of the existing lattice girders. In the case of 70-type, the high-performance lattice girders increased yield strengths by 12.1~14.9% than the existing lattice girder. In the case of 95-type, the high-performance lattice girders increased yield strengths by 13.3~20.0% than the existing lattice girder. As a result of numerical analysis, it was considered that the high-performance lattice girder supported better than the existing lattice girder when only the lattice girders were constructed.

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF