• Title/Summary/Keyword: Elasticity effect

Search Result 897, Processing Time 0.028 seconds

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

  • Kumar, Rajneesh;Gupta, Rajani Rani
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.577-592
    • /
    • 2008
  • Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.435-445
    • /
    • 2018
  • This paper is concerned with thermo-mechanical vibration behavior of flexoelectric/piezoelectric nanobeams under uniform and linear temperature distributions. Flexoelectric/piezoelectric nanobeams have higher natural frequencies compared to conventional piezoelectric ones, especially at lower thicknesses. Both nonlocal and surface effects are considered in the analysis of flexoelectric/piezoelectric nanobeams for the first time. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Comparison study is also performed to verify the present formulation with those of previous data. Numerical results are presented to investigate the influences of the flexoelectricity, nonlocal parameter, surface elasticity, temperature rise, beam thickness and various boundary conditions on the vibration frequencies of thermally affected flexoelectric/piezoelectric nanobeam.

NUMERICAL ANALYSIS OF BLOOD FLOW DYNAMICS AND WALL MECHANICS IN A COMPLIANT CAROTID BIFURCATION MODEL (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, T.M.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.500-503
    • /
    • 2011
  • Blood flow simulations in an idealized carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flowrates and pressure in the carotid arteries were imposed for the boundary conditions. Comparing to rigid wall model, generally, we could find an increased recirculation region at the carotid bulb and an overall reduced wall shear stress. Also, there was appreciable change of flowrate and pressure waveform in longitudinal direction. Solid and wall shear stress concentration occurs at the bifurcation apex.

  • PDF

On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells

  • Mirjavadi, Sayed Sajad;Bayani, Hassan;Khoshtinat, Navid;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.631-640
    • /
    • 2020
  • In this paper, nonlinear vibration behaviors of multi-phase Magneto-Electro-Elastic (MEE) doubly-curved nanoshells have been studied employing Jacobi elliptic function method. The doubly-curved nanoshell has been modeled by using nonlocal elasticity and classic shell theory. An exact estimation of nonlinear vibrational behavior of smart doubly-curved nanoshell has been obtained via Jacobi elliptic function method. This method can incorporate the influences of higher order harmonics leading to an exact estimation of nonlinear vibration frequency. It will be indicated that nonlinear vibrational frequency of doubly-curved nanoshell relies on nonlocal effect, material composition, curvature radius, center deflection and electro-magnetic field.

Rheological properties and thermal degradation behaviors of sonochemically treated polycarbonate/polysiloxanes blends

  • Choi, Mi-Kyung;Kim, Yu-Bin;Kim, Ji-Hye;Kim, Hyung-Su
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2008
  • Two polysiloxanes having different chemical structures were blended with polycarbonate (PC) under ultrasonic irradiation in solution. The polysiloxanes used were poly(methylphenyl siloxane) and vinyl-terminated poly(dimethyl siloxane). It was of primary interest to investigate the effect of polysiloxane structure on the rheological properties of PC/polysiloxane blends. It was found that a small amount (1.5 phr) of polysiloxanes greatly altered the melt viscosities and elasticity of PC. In particular, incorporation of poly(methylphenylsiloxane) led to a notable increase in elasticity with greater shear sensitivity of PC. The observed rheological behaviors of PC/polysiloxane blends were partly explained in conjunction with the tendencies found in ultrasonic degradation of polysiloxanes. Thermal stability and morphology in sonicated blends of PC/polysiloxane blends were also discussed.