• Title/Summary/Keyword: Elastic zone

Search Result 307, Processing Time 0.028 seconds

Modeling and Analysis of Strain Localization in Concrete (콘크리트 변형률국소화 모형 및 해석)

  • 송하원;김인순;나웅진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.375-382
    • /
    • 1997
  • In this paper, a unified micromechanics-based model which can be applied to both tensile and compressive member of concrete is suggested and to the analysis of the strain-localization in concrete. From the comparison of the analysis results obtained from different size of concrete members with experimental data, it id shown that the model in this paper can be applied to the analysis of the strain localization concrete. For the finite element analysis of the strain-localization in concrete, the localized zone in concrete under strain localization is modeled as ad plastic model which can consider nonlinear strain softening and the non-localized zone is modeled as a nonlinear elastic-damage model. Using developed finite element analysis program. strain localization behaviors under compressive force for the different sizes of concrete having different sizes of the localized zone are simulated.

  • PDF

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials (횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동)

  • Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Alexandrov S.;Kang T.J.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M) (III) - Evaluation of Elastic-Plastic Fracture Toughness - (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (III) - 탄소성 파괴인성 평가 -)

  • Gwon, Jae-Do;In, Jae-Hyeon;Park, Jung-Cheol;Choe, Seong-Jong;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2405-2412
    • /
    • 2000
  • A cast stainless steel may experience an embrittlement when it is exposed to approximately 30$0^{\circ}C$ for long period. In the present investigation, The three classes of the thermally aged CF8M specimie n are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 300, 1800 and 3600hrs. at 43$0^{\circ}C$ respectively, the specimens are quenched in water to room temperature. Load versus load line displacement curves and J-R curves are obtained using the unloading compliance method. $J_{IC}$ values are obtained following ASTM E 813-87 and ASTM E 813-81 methods. In addition to these methods, JIC values are obtained using SZW(stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are $J_Q$=485.7 kJ/m$^2$ for virgin material, $J_{IC}$ of the degraded materials associated with 300, 1800 and 3600hrs are obtained 369.25 kJ/m$^2$, 311.02 kJ/m$^2$, 276.7 kJ/m$^2$, respectively. The results of SZW method are similar to those of the unloading compliance method. Through the elastic-plastic fracture toughness test, it is found that the value of $J_{IC}$ is decreased with increasing of the aging time. The results obtained through the investigation can provide reference data for a leak before break(LBB) of reactor coolant system of nuclear power plants.

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Fatigue Assessment of Reactor Vessel Outlet Nozzle Weld Considering the LBZ and Welding Residual Stress Effect (국부 취화부와 용접 잔류응력 효과를 고려한 원자로 출구노즐 용접부의 피로강도 평가)

  • Lee, Se-Hwan
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.48-56
    • /
    • 2006
  • The fatigue strength of the welds is affected by such factors as the weld geometry, microstructures, tensile properties and residual stresses caused by fabrication. It is very important to evaluate the structural integrity of the welds in nuclear power plant because the weldment undergoes the most of damage and failure mechanisms. In this study, the fatigue assessments for a reactor vessel outlet nozzle with the weldment to the piping system are performed considering the welding residual stresses as well as the effect of local brittle zone in the vicinity of the weld fusion line. The analytical approaches employed are the microstructure and mechanical properties prediction by semi-analytical method, the thermal and stress analysis including the welding residual stress analysis by finite element method, the fatigue life assessment by following the ASME Code rules. The calculated results of cumulative usage factors(CUF) are compared for cases of the elastic and elasto-plastic analysis, and with or without residual stress and local brittle zone effects, respectively. Finally, the fatigue life of reactor vessel outlet nozzle weld is slightly affected by the local brittle zone and welding residual stresses.