• Title/Summary/Keyword: Elastic stiffness

Search Result 1,213, Processing Time 0.019 seconds

A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses (현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구)

  • Kim, Sung-Hee;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, a series of full-scale field tests on prebored and precast steel pipe piles and the corresponding numerical analysis have been conducted in order to study the characteristics of pile load-settlement relations and shear stress transfer at the pile-soil interface. Dynamic pile load tests (EOID and restrike) have been performed on the piles and the estimated design pile loads from EOID and restrike tests were analysed. Class-A type numerical analyses conducted prior to the pile loading tests were 56~105%, 65~121% and 38~142% respectively of those obtained from static load tests. In addition, design loads estimated from the restrike tests indicate increases of 12~60% compared to those estimated in the EOID tests. The EOID tests show large end bearing capacity while the restrike tests demonstrate increased skin friction. When impact energy is insufficient during the restrike tests, the end bearing capacity may be underestimated. It has been found that total pile capacity would be reasonably estimated if skin friction from the restrike tests and end bearing capacity from the EOID are combined. The load-settlement relation measured from the static pile load tests and estimated from the numerical modelling is in general agreement until yielding occurs, after which results from the numerical analyses substantially deviated away from those obtained from the static load tests. The measured pile behaviour from the static load tests shows somewhat similar behaviour of perfectly-elastic plastic materials after yielding with a small increase in the pile load, while the numerical analyses demonstrates a gradual increase in the pile load associated with strain hardening approaching ultimate pile load. It has been discussed that the load-settlement relation mainly depends upon the stiffness of the ground, whilst the shear transfer mechanism depends on shear strength parameters.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Clinical significance of the mechanical properties of the abdominal aorta in Kawasaki disease (가와사끼병에서 복부 대동맥의 물리적 특성의 임상적 의의)

  • Kim, Mi Jin;Lee, Sang Yun;Kim, Yong Bum;Kil, Hong Ryang
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.9
    • /
    • pp.1012-1017
    • /
    • 2008
  • Purpose : This study aimed to assess the mechanical properties of the abdominal aorta in school-aged patients treated for Kawasaki disease and in normal, healthy children. Methods : This study examined 28 children with Kawasaki disease who had been followed up on and 30 healthy subjects of the same age and gender. We recorded systolic (Ps) and diastolic (Pd) blood pressure values and the aortic diameter at both minimum diastolic (Dd) and maximum systolic (Ds) expansion using two-dimensional echocardiography. These measurements were used to determine 1) aortic strain: S=(Ds-Dd)/Dd; 2) pressure strain elastic modulus: Ep=(Ps-Pd)/S; and 3) normalized Ep: $Ep^*=Ep/Pd$. Results : Ep (P=0.008) and $Ep^*$ (P=0.043) of the Kawasaki disease group were relatively high compared to those of the control group. Ep (P=0.002) and $Ep^*$ (P=0.015) of patients with coronary aneurysm were also relatively high compared with those of patients without coronary aneurysm, but lipid profiles did not differ, except for homocysteine (P=0.008). Therefore, in patients with coronary aneurysm, aortic stiffness was higher, compared to not only the control group but also patients without coronary aneurysm. However, in patients without coronary aneurysm, aortic stiffness was not significant, different compared to the control group. Conclusion : Measuring aortic distensibility may be helpful in assessing the risk of early atheroscletic change in the long-term management of Kawasaki disease.