• Title/Summary/Keyword: Elastic restraint

Search Result 65, Processing Time 0.022 seconds

A Study on Elastic Buckling Strength of Truss-Stayed Single Column System (트러스로 보강된 단일기둥시스템의 탄성좌굴강도에 대한 연구)

  • Kim, Kyung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5984-5989
    • /
    • 2011
  • The buckling strength of a pin-ended column may be increased significantly by reinforcing it with an assemblage of cross-arm members rigidly connected to the modpoint of the column and stayed members connecting the ends of the columns and cross-arm members. The purpose of the stays and cross-arm members is to introduce restraint against translation and rotation and thereby decrease the effective buckling length of the column. In this study, buckling strengths of the reinforced columns were quantitatively evaluated from analytical solutions and elastic/inelastic finite elements analysis and the results were compared each other. It was found that the reinforcing system may increase the buckling strength up to 8 times compared to ones without reinforcing system.

A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections (폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델)

  • Jung, Sung-Nam;Park, Il-Ju;Lee, Ju-Young;Lee, Jung-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

Themal Stress Analysis of the Heat of Hydration Considering Pipe-Cooling (파이프 쿨링을 고려한 수화열 해석기법에 관한연구)

  • 긴진근;김국한;최계식;양주경;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.274-279
    • /
    • 1995
  • The heat of hyderation of cement causes the internal temperature rise and volume change at early age, paticular in massive concrete structures. As the results of the temperature rise and extenal restraint conditions, the themal stress may induce cracks in concrete. Therefore various techenuques of the themal stress control of the mass concrete has been widely used. One of these techniques is pipe-cooling which is considered in this study. The objective of this paper is to develop finite element program which is capable of simulating the temperature history and the thermal stress considering pipe-cooling, creep and the modified elastic modulus dud to maturity effect.

  • PDF

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

Retrofitting Device to Increase Seismic Resistant Capactiy of Shear Walls (전단벽의 내진보강을 위한 방법에 관한 연구)

  • Hong, Sung-Gul;Lee, Ji-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • The elastic buckling load or strength of a concentrically loaded slender metal column may be increased many times by reinforcing it with an assemblage of pretensioned stays and rigidity connected crossarm members. The complete system is herein referred to as a 'stayed column'. The purpose of the pretensioned stays and crossarm members is to introduce, at several points along the length of the column, restraint against translation and rotation and thereby decrease the effective unsupported buckling length of the column. This paper verifies that pretensioned cable of stayed column is effective for cyclic load and increases strength of shear wall against earthquake by reinforcing side of wall. Design process of stayed column which satisfies demanded capacity and ductility of wall is presented by analyzing result of experiment.

  • PDF

The Vibration Characteristic of Large Main Steam Pipelines in Power Plant (발전소의 대형 주증기배관의 진동 특성)

  • Kim, Yeon-Whan;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.709-715
    • /
    • 1996
  • In recent years, the piping vibration in many Power Plants is being increased by the aged generating facilities due to a long time use. Generally, the pressure fluctuations associated with the flow-induced excitations in this case are broadband in nature. Mainly, the dominant sources of vibration are a vortex-shedding, plane waves and boundary layer turbulence. The peak level of the spectrum is proportional to the dynamic head. A severe disturbance in pipeline results in the generation of intense broadband internal sound waves which can propagate through the piping system. The characteristic frequencies of operating loads of 20%, 57%, 70%, 100% are 4 - 6 Hz and coincide with the results from impact hammering test and FEM analysis. We chose the wire energy absorbing rope restraint as a vibration reduction method after reviewing the various conditions such as site, installing space and economic cost etc. After installation, the vibration level was reduced about 54% in velocity.

  • PDF

Improved phenomenological modelling of transient thermal strains for concrete at high temperatures

  • Nielsen, Claus V.;Pearce, Chris J.;Bicanic, Nenad
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.189-209
    • /
    • 2004
  • Several extensions to the Thelandersson phenomenological model for concrete under transient high temperatures are explored. These include novel expressions for the temperature degradation of the elastic modulus and the temperature dependency of the coefficient of the free thermal strain. Furthermore, a coefficient of thermo mechanical strain is proposed as a bi-linear function of temperature. Good qualitative agreement with various test results taken from the literature is demonstrated. Further extensions include the effects of plastic straining and temperature dependent Poisson's ratio. The models performance is illustrated on several simple benchmark problems under uniaxial and biaxial stress states.

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.