• Title/Summary/Keyword: Elastic material

Search Result 2,366, Processing Time 0.03 seconds

Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method (이종재료 금속조인트의 굽힘에 의한 잔류응력 해석)

  • Baek Tae-Hyun;Jung Girl;Park Tae-Geun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

A Study on Wearing Sensations of Girls'High School Uniforms Based on Elasticity(1) -Focusing on Mechanical Properties and Insulation- (신축성에 따른 여고생 교복의 착용감에 관한 연구(제1보) -역학적 특성과 보온성에 관하여-)

  • 민경혜;류덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.545-553
    • /
    • 2003
  • A good school uniform leads students to good behavior and have them enjoy desirable school life. Therefore a better fabric for girls' high school uniform suggested through two series of studies; first, examined the various aspects of current uniforms. Second, made a new fabric for uniform considering elasticity for activity and comfortableness, and compared its characteristics with those of the current uniforms. The results are as follows; 1 Most of students wanted uniforms considering elasticity for activity and wearing. 2. The measurement of the elasticities of the uniform materials showed that the material which was made using the elastic material was more elastic than the currently used material by 42.12% in summer material and 20.05% in winter one. 3. The analysis using the combination of the values of mechanical properties showed that the elastic material was better in the wearing, tactile senses, and drape properties than the current material, even though it was a little worse in shape-stability. 4. To compare the thermal insulation, clo values were measured. For winter uniform, the elastic material was better than the current one in keeping warm. However, This study did not find any big difference between summer uniform materials.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio (신장률 변화에 따른 초탄성 재료의 비선형 재료모델 비교 연구)

  • Lee, Kangsu;Ki, Minsuk;Park, Byoungjae
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.253-260
    • /
    • 2018
  • Recently, the application of non-steel materials in ships and offshore plants is increasing because of the development of various nonlinear materials and the improvement of performance. Especially, hyper-elastic materials, which have a nonlinear stress-strain relationship, are used mainly in marine plant structures or ships where impact relaxation, vibration suppression, and elasticity are required, while elasticity must be maintained, even under high strain conditions. In order to simulate and evaluate the behavior of the hyperelastic material, it is very important to select an appropriate material model according to the strain of the material. This study focused on the selection of material models for hyperelastic materials, such as rubber used in the marine and offshore fields. Tension and compression tests and finite element simulations were conducted to compare the accuracy of the nonlinear material models due to variations in the stretch ratio of hyper-elastic material. Material coefficients of nonlinear material models are determined based on the curve fitting of experimental data. The results of this study can be used to improve the reliability of nonlinear material models according to stretch ratio variation.

Study of Thermal Conductivity and Mechanical Property of Elastic Epoxy (탄성형 에폭시의 열전도율 및 기계적 특성에 대한 연구)

  • Lee, Kwan-Woo;Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.319-322
    • /
    • 2004
  • In this paper, we studied on the thermal conductivity and a mechanical property of the elastic epoxy. According to industrial development, insulation materials have various properties. They are solid, liquid, gas state, there are various type. Epoxy, a kind of insulation material, demand of not only high hardness but also elastic property. When the electric current flows into the conductor and the place where the heat occurs, this heat becomes the cause which shortens the life of the electrical appliance. Therefore, for the heat occurred transmit quickly, thermal conductivity of the insulation material is highly demanded. We studied on the thermal conductivity of elastic epoxy on the high voltage. In this result, thermal conductivity confirmed that it followed thermal property of mixed epoxy and addictives. Hardness is decreased when addictives increased.

  • PDF

A Study on the Development of Photoelastic Experiment Model Material for Transversely Isotropic Material (횡등방성체용 광탄성재료 개발에 관한 연구)

  • 황재석;김병일;이광호;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1876-1888
    • /
    • 1995
  • In this paper, glass surface-mat reinforced epoxy(G.S.R.E.) is developed, It is assured that the material(G.S.R.E.) can be used as photoelastic model material and it satisfy with the required properties of photoelastic model material. Therefore, the material can be used as model material of transparent photoelastic experiment when we analyze the stress distributions of transversely isotropic material by photoelastic experiment. When we use G.S.R.E. as photoelastic experiment model material, we had better use the G.S.R.E. which fiber volume ratio is less than 0.7% in the high temperature(stress freezing method) and than 1.74% in the room temperature. Relationships between stress fringe value and elastic modulus in transversely isotropic material are developed in this paper, it is assured by experiment that they are established in the room temperature or in the high temperature. Therefore we can obtain stress fringe value or elastic modulus from the relationships between stress fringe value and elastic modulus.