• Title/Summary/Keyword: Elastic Support

Search Result 311, Processing Time 0.025 seconds

Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube (신형경수로1400 증기발생기 전열관의 유체유발진동 해석)

  • 이광한;정대율;변성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

The Acoustic Vibration Properties for Chicken Eggs (계란의 음향진동 특성)

  • 최완규;조한근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.293-300
    • /
    • 2002
  • Surface crack detection is an important aspect in the quality control process of egg markets. The acoustic vibration of an egg could be used as a critical factor in evaluating the eggshell quality. The mode shape indicates the egg vibration behavior at different locations with respect to the input impulse and provides important information for the optimum sensor location to obtain the desired acoustic measurements. Theoretical analysis and experimental measurements were conducted to determine the acoustic vibration modes in eggs. The resonant fiequencies of the first and second resonance mode of intact eggs were found to be distributed between 2kHz and 7kHz range. The measured mode shapes of an egg were similar to theoretical shapes of homogeneous, elastic spheres. An elliptical deformation at the equator ring of the egg was observed. The frequency peak of this mode was dominantly present in the frequency spectrum of an intact egg impacted at its sharp position. The mode shapes related to the first resonant frequency of an egg shelved that the optimum location for the measuring sensor was the 180 degrees position. A optimum location for the egg support was found to be the 90 degrees position having the smallest vibration magnitude.

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

Basic Design of Subsea Manifold Suction Bucket (심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계)

  • Woor, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.

Strain and crack development in continuous reinforced concrete slabs subjected to catenary action

  • Gouverneur, Dirk;Caspeele, Robby;Taerwe, Luc
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.173-188
    • /
    • 2015
  • Several structural calamities in the second half of the 20th century have shown that adequate collapse-resistance cannot be achieved by designing the individual elements of a structure without taking their interconnectivity into consideration. It has long been acknowledged that membrane behaviour of reinforced concrete structures can significantly increase the robustness of a structure and delay a complete collapse. An experimental large-scale test was conducted on a horizontally restrained, continuous reinforced concrete slab exposed to an artificial failure of the central support and subsequent loading until collapse of the specimen. Within this investigation the development of catenary action associated with the formation of large displacements was observed to increase the ultimate load capacity of the specimen significantly. The development of displacements, strains and horizontal forces within this investigation confirmed a load transfer process from an elastic bending mechanism to a tension controlled catenary mechanism. In this contribution a special focus is directed towards strain and crack development at critical sections. The results of this contribution are of particular importance when validating numerical models related to the development of catenary action in concrete slabs.

Deep-beams with indirect supports: numerical modelling and experimental assessment

  • Pimentel, Mario;Cachim, Paulo;Figueiras, Joaquim
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.117-134
    • /
    • 2008
  • An experimental and numerical research was conducted to gain a deeper insight on the structural behaviour of deep-beams with indirect supports and to assess the size effects in the ultimate state behaviour. The experimental campaign focused on the influence of the reinforcement tie distribution height on the compression check of the support region and on the benefits of using unbonded prestressing steel. Three reduced scale specimens were tested and used to validate the results obtained with a nonlinear finite element model. As a good agreement could be found between the numerical and the experimental results, the numerical model was then further used to perform simulations in large scale deep-beams, with dimensions similar to the ones to be adopted in a practical case. Two sources of size effects were identified from the simulation results. Both sources are related to the concrete quasi-brittle behaviour and are responsible for increasing failure brittleness with increasing structural size. While in the laboratory models failure occurred both in the experimental tests as well as in the numerical simulations after reinforcement yielding, the numerically analysed large scale models exhibited shear failures with reinforcement still operating in the elastic range.

Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings

  • Mohammadimehr, Mehdi;Meskini, Mohammad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.69-82
    • /
    • 2020
  • In this study, the free and forced vibration analysis of micro sandwich plate with porous core layer and magneto-electric face sheets based on modified couple stress theory and first order shear deformation theory under simply supported boundary conditions is illustrated. It is noted that the core layer is composed from balsa wood and also piezo magneto-electric facesheets are made of BiTiO3-CoFe2O4. Using Hamilton's principle, the equations of motion for micro sandwich plate are obtained. Also, the Navier's method for simply support boundary condition is used to solve these equations. The effects of applied voltage, magnetic field, length to width ratio, thickness of porous to micro plate thickness ratio, type of porous, coefficient of porous on the frequency ratio are investigated. The numerical results indicate that with increasing of the porous coefficient, the non-dimensional frequency increases. Also, with an increase in the electric potential, the non-dimensional frequency decreases, while and with increasing of the magnetic potential is vice versa.

Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns (CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.