• Title/Summary/Keyword: Elastic Nonlinearity

Search Result 152, Processing Time 0.02 seconds

Probabilistic analysis of micro-film buckling with parametric uncertainty

  • Ying, Zuguang;Wang, Yong;Zhu, Zefei
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.697-708
    • /
    • 2014
  • The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

Quay Mooring Analysis (안벽계류해석)

  • Tae-Myoung,Oh;Deuk-Joon,Yum
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents the quasi-static mooring analysis model for a vessel moored at the quay. The results of this analysis will aid the designer in determining the mooring configuration for the surface vessels subjected to wind, current and wave forces. And it will also help him in selecting the equipment for the fixed mooring system. The cumulative elastic behavior of the mooring lines invokes a complicated nonlinear problem since the mooring lines are relatively short and hang in air as noncoplanar configurations. This nonlinear mooring problem is solved in this paper by the load increment technique in which the external load is increased step by step taking all sources of nonlinearity into account.

  • PDF

Nonlinear thermal buckling of bi-directional functionally graded nanobeams

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • We in this article study nonlinear thermal buckling of bi-directional functionally graded beams in the theoretical frameworks of nonlocal strain graded theory. To begin with, it is assumed that the effective material properties of beams vary continuously in both the thickness and width directions. Then, we utilize a higher-order shear deformation theory that includes a physical neutral surface to derive the size-dependent governing equations combining with the Hamilton's principle and the von $K{\acute{a}}rm{\acute{a}}n$ geometric nonlinearity. It should be pointed out that the established model, containing a nonlocal parameter and a strain gradient length scale parameter, can availably account for both the influence of nonlocal elastic stress field and the influence of strain gradient stress field. Subsequently, via using a easier group of initial asymptotic solutions, the corresponding analytical solution of thermal buckling of beams is obtained with the help of perturbation method. Finally, a parametric study is carried out in detail after validating the present analysis, especially for the effects of a nonlocal parameter, a strain gradient length scale parameter and the ratio of the two on the critical thermal buckling temperature of beams.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Structural health monitoring for pinching structures via hysteretic mechanics models

  • Rabiepour, Mohammad;Zhou, Cong;Chase, James G.;Rodgers, Geoffrey W.;Xu, Chao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.245-258
    • /
    • 2022
  • Many Structural Health Monitoring (SHM) methods have been proposed for structural damage diagnosis and prognosis. However, SHM for pinched hysteretic structures can be problematic due to the high level of nonlinearity. The model-free hysteresis loop analysis (HLA) has displayed notable robustness and accuracy in identifying damage for full-scaled and scaled test buildings. In this paper, the performance of HLA is compared with seven other SHM methods in identifying lateral elastic stiffness for a six-story numerical building with highly nonlinear pinching behavior. Two successive earthquakes are employed to compare the accuracy and consistency of methods within and between events. Robustness is assessed across sampling rates 50-1000 Hz in noise-free condition and then assessed with 10% root mean square (RMS) noise added to responses at 250 Hz sampling rate. Results confirm HLA is the most robust method to sampling rate and noise. HLA preserves high accuracy even when the sampling rate drops to 50 Hz, where the performance of other methods deteriorates considerably. In noisy conditions, the maximum absolute estimation error is less than 4% for HLA. The overall results show HLA has high robustness and accuracy for an extremely nonlinear, but realistic case compared to a range of leading and recent model-based and model-free methods.

Lateral stiffness of corner-supported steel modular frame with splice connection

  • Yi-Fan Lyu;Guo-Qiang Li;Ke Cao;Si-Yuan Zhai;De-Yang Kong;Xuan-Yi Xue;Heng Li
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.321-333
    • /
    • 2023
  • This paper proposes a comprehensive investigation on lateral stiffness of corner-supported steel modular frame using splice connection. A full-scale modular frame with two stacked steel modules under lateral load is tested. Ductile pattern in the transfer of lateral load is found in the final failure mode. Two types of lateral stiffness, including tangent stiffness and secant stiffness, are defined from the load-displacement due to the observed nonlinearity. The difference between these two types of stiffness is found around 20%. The comparisons between the experimental lateral stiffness and the predictions of classical methods are also conducted. The D-value method using hypothesis of independent case is a conservative option for predicting lateral stiffness, which is more recommended than method of contraflexural bending moment. Analyses on two classical short-rod models, including fix-rod model and pin-rod model, are further conducted. Results indicate that fix-rod model is more recommended than pin-rod model to simplify splice connection for simulation on lateral stiffness of modular frame in elastic design stage.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates (판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법)

  • Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.458-463
    • /
    • 2010
  • Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions; (1) phase matching, (2) non-zero power flux, (3) group velocity matching, and (4) non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter growed up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters.

Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion (3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석)

  • Lee, Jin Ho;Kim, Jae Kwan;Kim, Jung Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.317-325
    • /
    • 2016
  • In this study, nonlinear earthquake responses of a soil-structure interaction(SSI) system which is subjected to a three-directional ground motion are examined. The structure and the near-field region of soil, where the geometry is irregular, the material properties are heterogeneous, and nonlinear dynamic responses are expected, are modeled by nonlinear finite elements. On the other hand, the infinite far-field region of soil, which has a regular geometry and homogeneous material properties and dynamic responses is assumed linearly elastic, is represented by three-dimensional perfectly matched discrete layers which can radiate elastic waves into infinity efficiently. Nonlinear earthquake responses of the system subjected to a three-directional ground motion are calculated with the numerical model. It is observed that the dynamic responses of a SSI system to a three-directional motion have a predominant direction according to the characteristics of the ground motion. The responses must be evaluated using precise analysis methods which can consider nonlinear behaviors of the system accurately. The the method employed in this study can be applied easily to boundary nonlinear problems as well as material nonlinear problems.