• Title/Summary/Keyword: Elastic Modulus Test

Search Result 650, Processing Time 0.027 seconds

Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$ (지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰)

  • Kim, Dae-Sang;Choi, Chan-Yong;Kim, Seong-Jung;Yu, Jin-Young;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Determination of Brinell Hardness through Instrumented Indentation Test without Observation of Residual Indent (계장화압입시험법을 이용한 비압흔관찰 브리넬 경도 평가)

  • Kim, Sung-Hoon;Choi, Yeol;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.578-585
    • /
    • 2004
  • Hardness test is performed for determination of the other properties, such as strength, wear resistance and deformation resistance, as well as hardness itself. And it is performed for prediction of residual lifetime by analysis of hardness reduction or hardness ratio. However, hardness test has limitation that observation of residual indent is needed for determination of hardness value, and that is the reason for not to be widely used in industrial field. Therefore, in this study, we performed researches to obtain Brinell hardness value from quantitative numerical formula by analysing relationship between indentation depths from indentation load-depth curve and mechanical properties such as work hardening exponent, yield strength and elastic modulus.

An Experimental Study on Effects of Density and Confining Pressure on the Elastic Modulus of Subgrade Soils (밀도와 구속압력이 노상토의 탄성계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung;Kim, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 1988
  • In this study, effects of the density of soil and the confining pressure applied to the soil sample on the elastic moduli of subgrade soils are experimentally analyzed. Through investigation of subgrade materials of domestic expressways, five typical types of subgrade soils are selected for the experiments. A series of unconsolidated undrained triaxial tests is performed on samples prepared with various water contents and densities at the confining pressures of 1.02, 2.04, and $3.06kg/cm^2$. Initial tangent modulus is inferred from the unloading-reloading portion of the stress strain curve obtained during an individual loading-unloading-reloading test. As a result of the analysis, it is found that the effect of the confining pressure on the elastic modulus of subgrade material is well consistent with the equation proposed by Janbu, and that the elastic modulus can be related to the dry unit weight expressing the Janbu constants as exponentiial functions of it. It is also found that the water content has little effect on the elastic modulus for the samples with the degree of saturation less than 70%.

  • PDF

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability (소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구)

  • Ok Myoung-Ryul;Ju Jang-Bog;Lee Jeong-Hwan;Ahn Jeong-Hoon;Nahm Seung Hoon;Lee Hae-Moo;Kwon Dongil
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

A Study on Behavior of Elastic Settlement of Coastal Structure on Sandy Ground (모래층 지반 안벽구조물의 탄성침하거동 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.201-208
    • /
    • 2007
  • This paper is research results of investigating the elastic settlement behavior of the coastal caisson structure built on the sandy deposit by comparing results of centrifuge model experiments and those of existing methods of estimating elastic settlement. Basic soil property tests such as specific gravity test, grain size distribution test and organic content test with disturbed soil sampled from the site were carried out. The centrifuge experiment of model satisfying the required design criteria was performed under 50 of artificial accelerated gravitational force condition. The Centrifuge model experimental results were compared and analyzed with the current methods of estimating settlement based on the elastic modulus obtained from the results of odeometer tests and empirical methods from literature reviews.

  • PDF