• Title/Summary/Keyword: Elastic Foundations

Search Result 227, Processing Time 0.029 seconds

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Seismic surface waves in a pre-stressed imperfectly bonded covered half-space

  • Negin, Masoud
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • Propagation of the generalized Rayleigh waves in an elastic half-space covered by an elastic layer for different initial stress combinations and imperfect contact conditions is investigated. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed, the corresponding dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results on the influence of the initial stress patterns and on the influence of the contact conditions are presented and discussed. The case where the external forces are "follower forces" is considered as well. These investigations provide some theoretical foundations for the study of the near-surface waves propagating in layered mechanical systems and can be successfully used for estimation of the degree of the bonded defects between layers, fault characteristics and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Plate on non-homogeneous elastic half-space analysed by FEM

  • Wang, Yuanhan;Ni, Jun;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.127-139
    • /
    • 2000
  • The isoparametric element method is used for a plate on non-homogenous foundation. The surface displacement due to a point force acting on the non-homogeneous foundation is the fundamental solution. Based on this analysis, the interaction between the foundation and plate can be determined and the reaction of the foundation can be treated as the external force to the plate. Therefore, only the plate needs to be divided into some elements. The method presented in this paper can be used in cases such as thin or thick plate, different plate shapes, various loading, homogenous and non-homogenous foundations. The examples in this paper show that this method is versatile, efficient and highly accurate.

Free Vibrations of Curved Beams Partially Supported on Elastic Foundation (탄성지반으로 부분 지지된 곡선보의 자유진동)

  • 이병구;최규문;이태은;김무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.106-115
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams partially supported on elastic foundations. Taking account of the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation. Differential equations are numerically solved to calculate natural frequencies and mode shapes. The experiments were performed in which the free vibration frequencies of such curved beams in laboratorial scale were measured and these results agreed quite well with the present studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members are considered. The parametric studies are performed and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation (탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.61-77
    • /
    • 2021
  • The porosity of functionally graded materials (FGM) can affect the static and dynamic behavior of plates, which is important to take this aspect into account when analyzing such structures. The present work aims to study the effect of the distribution shape of porosity on the free vibration response of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is expanded to study the influence of the distribution shape of porosity on the free vibration behavior of FG plates. The findings showed that the distribution shape of porosity significantly influences the free vibration behavior of thick rectangular FG plates for small values of Winkler-Pasternak elastic foundation parameters.

Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling

  • Kablia, Aicha;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.389-409
    • /
    • 2022
  • During the manufacture of FGM plates, defects such as porosities can appear. Those can change the entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally graded (FG) plates resting on elastic foundations. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and thickness ratio on the fundamental frequency of plates have been investigated.