• 제목/요약/키워드: Elastic Blood Vessel

검색결과 25건 처리시간 0.023초

뉴턴유체와 혈액의 맥동유동시 탄성혈관의 운동이 벽면전단응력분포에 미치는 영향 (Effects of Elastic Blood Vessel Motions on the Wall Shear Stresses for Pulsatile Flow of a Newtonian Fluid and Blood)

  • 노형운;김재수;박길문;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.318-323
    • /
    • 2001
  • Characteristics of the pulsatile flow in a 3-dimensional elastic blood vessel are investigated to understand the blood flow phenomena in the human body arteries. In this study, a model for the elastic blood vessel is proposed. The finite volume prediction is used to analyse the pulsatile flow in the elastic blood vessel. Variations of the pressure, velocity and wall shear stress of the pulsatile flow in the elastic blood vessel are obtained. The magnitudes of the velocity waveforms in the elastic blood vessel model are larger than those in the rigid blood vessel model. The wall shear stresses on the elastic vessel vary with the blood vessel motions. Amplitude indices of the wall shear stress for blood in the elastic blood vessel are $4\sim5$ times larger than those of the Newtonian fluid. As the phase angle increased, point of the phase angle is are moved forward and the wall shear stresses are increased for blood and the Newtonian fluid.

  • PDF

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

탄성혈관 내 기계식 인공심장판막(MHV)의 거동 및 혈액 유동 특성에 관한 수치해석적 연구 (A Numerical Analysis on the Motion of Mechanical Heart Valve(MHV) and Characteristics of Blood Flow in an Elastic Blood Vessel)

  • 방진석;최청렬;김창병
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.154-161
    • /
    • 2005
  • In this study, the leaflet motion of a mechanical heart valve and the characteristics of two-dimensional transient blood flow in an elastic blood vessel have been numerically investigated by using fluid-structure interaction method. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. As a result, closing motion of the leaflet is faster than opening one. While opening angles of leaflet grow up, vortex is detected at the sinus and backward of the leaflets. When the leaflet is fully closed, vortex is detected at the ventricle and at that moment maximum displacement of the elastic blood vessel is observed in the vicinity of the sinus region. Maximum displacement is caused in association with the blood flow that is oriented toward the elastic blood vessel.

혈관내 맥동유동의 FSI 모사 (FSI simulation of pulsatile flow in the blood vessel)

  • 김윤기;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1484-1486
    • /
    • 2008
  • Characteristics of pulsatile flow in 3-dimensional elastic vessel wall should be investigated in order to understand the physiological blood flow in human body. In this study, the modelling of the physiological blood flow in the elastic blood vessel is proposed. Variation of the pressure and the velocity wavefroms are obtained using the FSI method

  • PDF

협착된 경동맥 내의 벽전단응력 및 혈관의 탄성적 거동 (Elastic Motion of the Blood Vessel and Wall Shear Stress in Carotid Artery with Stenosis)

  • 김창녕;오택열;최명진;정삼두
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.179-187
    • /
    • 2005
  • The characteristics of blood flow and the interaction between the blood vessel and blood flow play important roles in plaque cap rupture and the growth of atherosclerosis which may lead directly to a heart attack or a stroke. In this study, carotid arteries with different stenoses have been numerically simulated to investigate the wall shear stress(WSS) and the elastic motion of the vessel. Blood flow has been treated as physiological, laminar and incompressible flow. To model the shear thining behavior of the blood, the Carreau-Yasuda model has been employed but the viscoelasticity of blood has not been considered. The results show that the WSS of $severe(75\%)$ stenosis is much higher than those of $25\%\;and\;50\%$ stenosis in the region of stenosis. With the increase in the stenosis thickness, the expansion ratio of the center of the stenosis decreases while the expansion ratio of the upstream region of the stenosis increases.

협착 동맥혈관의 혈류유동 모델링 (Modeling of Hemodynamics in Stenosed Artery)

  • 김성종;박영란;김상진;강형섭;김진상;오성훈;강성준;김기범
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2285-2290
    • /
    • 2012
  • 동맥경화는 혈관 안에서 콜레스테롤의 침착 때문에 혈관이 좁아지거나, 딱딱해 지거나, 두꺼워 지게 되는데, 이런 현상이 심해지게 되면 동맥은 단단해져서 혈액이 원활히 통과하지 못하게 되고 심하면 사망 까지 이르게 되는 것이다. 본 연구에서는 복대동맥에서의 동맥경화가 진행되는 것을 탄성 혈관 일 때와 강성 혈관 일 때 각각 협착률이 혈관 직경의 20과 45%로 설정하고 속도와 압력 변화를 살펴보기 위하여 유한 요소 해석을 이용하여 모델링을 하였다. 혈관이 탄성 혈관일 때 속도와 압력 값은 협착률이 혈관 직경의 20%일 때 보다 45%일 때 더 높게 나타났으며, 강성 혈관에서 속도와 압력 값은 협착률이 혈관 직경의 20%일 때보다 45%에서 더 높았다. 협착률이 혈관 직경의 20과 45%인 탄성 혈관에서 재순환영역이 나타났다. 본 연구결과 혈관 협착에 따른 혈류역학적 특징을 이해하는데 도움이 될 것으로 판단된다.

탄성혈관 내 곡면형 이엽 기계식 인공심장판막의 거동 및 혈액 유동 특성에 관한 수치해석적 연구 (A Numerical Analysis on the Motion of a Curved Bileaflet in Mechanical Heart Valve(MHV) and the Characteristics of Blood Flow in an Elastic Blood Vessel)

  • 방진석;최청렬;김창녕
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.203-206
    • /
    • 2004
  • In this study, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in terms of fluid-structure interaction. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. From this analysis, the motion of the leaflet has been observed with fluttering phenomenon and rebound, and the flow fields of blood have been obtained with recirculation and regurgitation. The results can contribute to the development of design methodology for the curved bileaflet mechanical heart valve.

  • PDF

내부직경 변화를 고려한 혈관의 유체-구조 상호작용 해석 (Fluid-Structure Interaction Analysis of Blood Vessel Considering Internal Diameter Variation)

  • 레사 옥타비안티;김동현;김수현;보이케 나바반;변준호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.959-963
    • /
    • 2006
  • A three-dimensional elastic blood vessel model with internal diameter variation is considered to investigate internal flow characteristics and effects of structural deformation. Also, computational analyses for both the rigid model and the fully-coupled FSI model have been conducted in order to compare the shear stress, pressure distribution, and flow velocity in detail. A 70% narrowing area of asymmetric blood vessel model was especially investigated to show the versatility of fluid-structure interaction phenomenon. The results reveal that effect of fluid-structure interaction is very important to accurately investigate the flow characteristics of the blood vessel.

  • PDF

생체재료를 설명하는 스트레인 에너지 함수에 대한 이론적 고찰 (Theoretical Framework For Describing Strain Energy Function on Biomaterial)

  • 강태원
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.50-55
    • /
    • 2013
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. However, theoretical framework to describe and quantify the behaviour of blood vessel was not well established so far. For studying the biomechanical behavior of artery, Rubber-liked material which is similar to passive artery is selected since conventional theoretical interpretation is very limited to understand and predict the behavior of biomaterial. Rubber-like material is assumed to be very similar to artery and has properties of isotropy, homogeneity and is undergoing large deformation. Based on this assumption, stress developed on Rubber-like material is described by strain energy function and strain invariants which are required to understand the nonlinear elastic behavior of biomaterial. The descriptor which would be used for understanding the biomechanical behavior of artery is studied in this work.